PySCF: the Python‐based simulations of chemistry framework

Python‐based simulations of chemistry framework (PySCF) is a general‐purpose electronic structure platform designed from the ground up to emphasize code simplicity, so as to facilitate new method development and enable flexible computational workflows. The package provides a wide range of tools to support simulations of finite‐size systems, extended systems with periodic boundary conditions, low‐dimensional periodic systems, and custom Hamiltonians, using mean‐field and post‐mean‐field methods with standard Gaussian basis functions. To ensure ease of extensibility, PySCF uses the Python language to implement almost all of its features, while computationally critical paths are implemented with heavily optimized C routines. Using this combined Python/C implementation, the package is as efficient as the best existing C or Fortran‐based quantum chemistry programs. In this paper, we document the capabilities and design philosophy of the current version of the PySCF package. WIREs Comput Mol Sci 2018, 8:e1340. doi: 10.1002/wcms.1340

[1]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[2]  Garnet Kin-Lic Chan,et al.  Quadratic canonical transformation theory and higher order density matrices. , 2009, The Journal of chemical physics.

[3]  So Hirata,et al.  Coupled-cluster singles and doubles for extended systems. , 2004, The Journal of chemical physics.

[4]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[5]  H.J.J. van Dam,et al.  NWChem: scalable parallel computational chemistry , 2011 .

[6]  Qiming Sun,et al.  Gaussian-Based Coupled-Cluster Theory for the Ground-State and Band Structure of Solids. , 2017, Journal of chemical theory and computation.

[7]  Miguel A. L. Marques,et al.  Libxc: A library of exchange and correlation functionals for density functional theory , 2012, Comput. Phys. Commun..

[8]  Lisandro Dalcin,et al.  Parallel distributed computing using Python , 2011 .

[9]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[10]  C Filippi,et al.  Energy-consistent pseudopotentials for quantum Monte Carlo calculations. , 2007, The Journal of chemical physics.

[11]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .

[12]  Fan Wang,et al.  Equation-of-Motion Coupled-Cluster Theory for Excitation Energies of Closed-Shell Systems with Spin-Orbit Coupling. , 2014, Journal of chemical theory and computation.

[13]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[15]  Ali Alavi,et al.  Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. , 2009, The Journal of chemical physics.

[16]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[17]  Cesare Pisani,et al.  CRYSCOR: a program for the post-Hartree-Fock treatment of periodic systems. , 2012, Physical chemistry chemical physics : PCCP.

[18]  Rodney J. Bartlett,et al.  Equation of motion coupled cluster method for electron attachment , 1995 .

[19]  M. Head‐Gordon,et al.  Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group , 2002 .

[20]  Ali Alavi,et al.  Linear-scaling and parallelisable algorithms for stochastic quantum chemistry , 2013, 1305.6981.

[21]  Andreas M. Köster,et al.  Half‐numerical evaluation of pseudopotential integrals , 2006, J. Comput. Chem..

[22]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[23]  Kenneth Ruud,et al.  Arbitrary-Order Density Functional Response Theory from Automatic Differentiation. , 2010, Journal of chemical theory and computation.

[24]  Daoling Peng,et al.  Exact two-component Hamiltonians revisited. , 2009, The Journal of chemical physics.

[25]  Julia E. Rice,et al.  Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application , 1987 .

[26]  K. Schwarz,et al.  Solid state calculations using WIEN2k , 2003 .

[27]  Debashree Ghosh,et al.  Orbital optimization in the density matrix renormalization group, with applications to polyenes and beta-carotene. , 2007, The Journal of chemical physics.

[28]  Emilio Artacho,et al.  The SIESTA method; developments and applicability , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  Curtis L. Janssen,et al.  An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations , 1988 .

[30]  Qiming Sun,et al.  N-Electron Valence State Perturbation Theory Based on a Density Matrix Renormalization Group Reference Function, with Applications to the Chromium Dimer and a Trimer Model of Poly(p-Phenylenevinylene). , 2015, Journal of chemical theory and computation.

[31]  Paul W. Ayers,et al.  The density matrix renormalization group for ab initio quantum chemistry , 2013, The European Physical Journal D.

[32]  John F. Stanton,et al.  Coupled-cluster calculations of nuclear magnetic resonance chemical shifts , 1967 .

[33]  Trygve Helgaker,et al.  The integral‐direct coupled cluster singles and doubles model , 1996 .

[34]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[35]  Hideo Sekino,et al.  A linear response, coupled‐cluster theory for excitation energy , 1984 .

[36]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[37]  Sebastian Wouters,et al.  DMRG-CASPT2 study of the longitudinal static second hyperpolarizability of all-trans polyenes. , 2016, The Journal of chemical physics.

[38]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .

[39]  Ali Alavi,et al.  Quasi-degenerate perturbation theory using matrix product states. , 2016, The Journal of chemical physics.

[40]  S. Hirata Tensor Contraction Engine: Abstraction and Automated Parallel Implementation of Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation Theories , 2003 .

[41]  Qiming Sun,et al.  Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries. , 2014, Journal of chemical theory and computation.

[42]  Matthew L. Leininger,et al.  Psi4: an open‐source ab initio electronic structure program , 2012 .

[43]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[44]  Rodney J. Bartlett,et al.  Equation-of-motion coupled cluster method with full inclusion of the connected triple excitations for ionized states: IP-EOM-CCSDT , 2003 .

[45]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[46]  Filipp Furche,et al.  Adiabatic time-dependent density functional methods for excited state properties , 2002 .

[47]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[48]  Gerald Knizia,et al.  Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. , 2013, Journal of chemical theory and computation.

[49]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[50]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[51]  Gustavo E. Scuseria,et al.  Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications to FOOF and Cr2 , 1991 .

[52]  Takeshi Yanai,et al.  Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. , 2013, The Journal of chemical physics.

[53]  G. Schaftenaar,et al.  Molden: a pre- and post-processing program for molecular and electronic structures* , 2000, J. Comput. Aided Mol. Des..

[54]  Qiming Sun,et al.  A general second order complete active space self-consistent-field solver for large-scale systems , 2016, 1610.08394.

[55]  Qiming Sun,et al.  Stochastic Multiconfigurational Self-Consistent Field Theory. , 2015, Journal of chemical theory and computation.

[56]  Qiming Sun,et al.  Co-iterative augmented Hessian method for orbital optimization , 2016, 1610.08423.

[57]  R. Bartlett,et al.  A direct product decomposition approach for symmetry exploitation in many-body methods. I. Energy calculations , 1991 .

[58]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[59]  Garnet Kin-Lic Chan,et al.  From plane waves to local Gaussians for the simulation of correlated periodic systems. , 2016, The Journal of chemical physics.

[60]  Qiming Sun,et al.  Libcint: An efficient general integral library for Gaussian basis functions , 2014, J. Comput. Chem..

[61]  Garnet Kin-Lic Chan,et al.  Spin-adapted density matrix renormalization group algorithms for quantum chemistry. , 2012, The Journal of chemical physics.

[62]  R. Orlando,et al.  CRYSTAL14: A program for the ab initio investigation of crystalline solids , 2014 .

[63]  Lan Cheng,et al.  Four-component relativistic theory for NMR parameters: unified formulation and numerical assessment of different approaches. , 2009, The Journal of chemical physics.

[64]  Rodney J. Bartlett,et al.  Analytic energy derivatives in many‐body methods. I. First derivatives , 1989 .

[65]  Andreas W. Götz,et al.  PyADF — A scripting framework for multiscale quantum chemistry , 2011, J. Comput. Chem..

[66]  P. Pulay Improved SCF convergence acceleration , 1982 .

[67]  Garnet Kin-Lic Chan,et al.  An algorithm for large scale density matrix renormalization group calculations. , 2004, The Journal of chemical physics.

[68]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[69]  Hans Ågren,et al.  Efficient optimization of large scale MCSCF wave functions with a restricted step algorithm , 1987 .