Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere.

Abstract Matrix formulations are presented for the discrete-ordinate and the matrix-operator methods of solving the transfer of solar radiation in a plane-parallel scattering atmosphere. Eigenspace transformations of symmetric matrices are introduced into the method of Stamnes and Swanson instead of using the decomposition of an asymmetric matrix. The computational stability is considerably improved by this algorithm, especially for single-precision calculations. Representations of the reflection and transmission matrices in the matrix-operator method are also given, in terms of the indicated formulations, by considering a boundary-value problem of the discrete-ordinate method. The solutions of the discrete-ordinate method for inhomogeneous atmospheres are given by combining discrete-ordinate solutions for respective homogeneous sublayers through the addition technique of the matrix-operator method.