A study into the errors in vertical total electron content mapping using GPS data

A simulation is used to compare two different methods of generating maps of vertical total electron content (TEC) in the ionosphere for 24 days in 2001. The first method is the established thin shell, in which the ionosphere is represented by a thin shell at a fixed altitude. The second method uses a new four‐dimensional inversion algorithm called Multi‐Instrument Data Analysis System (MIDAS). The differences between the vertical TEC in the simulated ionosphere and that determined by each method provide a measure of the error in the vertical TEC maps. It was found that in general, the MIDAS method produced a threefold improvement in the accuracy of the determination of daytime TEC compared with the thin shell. At nighttime, the errors were much smaller and were similar for both methods.

[1]  S. Franke,et al.  Application of computerized tomography techniques to ionospheric research , 1986 .

[2]  Jeffrey Robert Austen,et al.  Ionospheric imaging using computerized tomography , 1988 .

[3]  Gabor E. Lanyi,et al.  A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations , 1988 .

[4]  Elena S. Andreeva,et al.  RADIOTOMOGRAPHIC RECONSTRUCTION OF IONIZATION DIP IN THE PLASMA NEAR THE EARTH , 1990 .

[5]  K. C. Yeh,et al.  Limitations of ionospheric imaging by tomography , 1991 .

[6]  S. E. Pryse,et al.  A preliminary experimental test of ionospheric tomography , 1992 .

[7]  James A. Secan,et al.  Application of stochastic inverse theory to ionospheric tomography , 1992 .

[8]  B. Wilson,et al.  A New Method for Monitoring the Earth's Ionospheric Total Electron Content Using the GPS Global Network , 1993 .

[9]  S. E. Pryse,et al.  Experimental ionospheric tomography with ionosonde input and EISCAT verification , 1993 .

[10]  L. J. Romans,et al.  Imaging the ionosphere with the global positioning system , 1994, Int. J. Imaging Syst. Technol..

[11]  T. Raymund Comparisons of several ionospheric tomography algorithms , 1995 .

[12]  Anthony J. Mannucci,et al.  Subdaily northern hemisphere ionospheric maps using an extensive network of GPS receivers , 1995 .

[13]  G. S. Bust,et al.  Mid‐America Computerized Ionospheric Tomography Experiment (MACE '93) , 1995 .

[14]  Thomas L. Gaussiran,et al.  Ionospheric observations of the November 1993 storm , 1997 .

[15]  Jaume Sanz,et al.  A two‐layer model of the ionosphere using Global Positioning System data , 1997 .

[16]  I. K. Walker,et al.  Two-dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT) , 1997 .

[17]  K. Davies,et al.  Studying the ionosphere with the Global Positioning System , 1997 .

[18]  Dieter Bilitza,et al.  International reference ionosphere—Status 1995/96 , 1997 .

[19]  Anthony J. Mannucci,et al.  A global mapping technique for GPS‐derived ionospheric total electron content measurements , 1998 .

[20]  James A. Secan,et al.  Tomography of the ionosphere: Four‐dimensional simulations , 1998 .

[21]  J. Wait,et al.  Propagation Of Radio Waves , 1998, IEEE Antennas and Propagation Magazine.

[22]  Jaume Sanz,et al.  Global observation of the ionospheric electronic response to solar events using ground and LEO GPS data , 1998 .

[23]  M. Bakry El-Arini,et al.  An introduction to Wide Area Augmentation System and its predicted performance , 2001 .

[24]  C. Mitchell,et al.  A three-dimensional time-dependent algorithm for ionospheric imaging using GPS , 2003 .

[25]  Cathryn N. Mitchell,et al.  A comparison of techniques for mapping total electron content over Europe using GPS signals , 2004 .

[26]  Cathryn N. Mitchell,et al.  Ionospheric electron concentration imaging using GPS over the USA during the storm of July 2000 , 2004 .

[27]  Cathryn N. Mitchell,et al.  Simultaneous observations of the main trough using GPS imaging and the EISCAT radar , 2005 .