Improved Interface Conditions for 2D Domain Decomposition with Corners: Numerical Applications

This article deals with a local improvement of domain decomposition methods for 2-dimensional elliptic problems for which either the geometry or the domain decomposition presents conical singularities. After explaining the main results of the theoretical analysis carried out in Chniti et al. (Calcolo 45, 2008), the numerical experiments presented in this article confirm the optimality properties of the new interface conditions.

[1]  Thomas Hagstrom,et al.  Numerical Experiments on a Domain Decomposition Algorithm for Nonlinear Elliptic Boundary Value Problems , 1988 .

[2]  A. Majda,et al.  Radiation boundary conditions for acoustic and elastic wave calculations , 1979 .

[3]  P. Grisvard,et al.  BEHAVIOR OF THE SOLUTIONS OF AN ELLIPTIC BOUNDARY VALUE PROBLEM IN A POLYGONAL OR POLYHEDRAL DOMAIN , 1976 .

[4]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[5]  Frédéric Nataf,et al.  Convergence rate of some domain decomposition methods for overlapping and nonoverlapping subdomains , 1997 .

[6]  Francis Nier,et al.  Remarques sur les algorithmes de décomposition de domaines , 1999 .

[7]  O. Widlund Domain Decomposition Algorithms , 1993 .

[8]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[9]  Frédéric Nataf,et al.  Méthode de décomposition de domaine pour l'équation d'advection-diffusion , 1991 .

[10]  Frédéric Nataf,et al.  Domain Decomposition Methods for Fluid Dynamics , 1995 .

[11]  Frédéric Nataf,et al.  The Best Interface Conditions for Domain Decomposition Methods : Absorbing Boundary Conditions , .

[12]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[13]  Frédéric Nataf,et al.  Improved interface conditions for 2D domain decomposition with corners: a theoretical determination , 2008 .

[14]  Frédéric Nataf,et al.  Convergence of domain decomposition methods via semi-classical calculus semiclassical calculus , 1998 .

[15]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[16]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .