Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction

Engineering systems modeling and analysis based on the bond graph approach has been applied to biomolecular systems. In this context, the notion of a Faraday-equivalent chemical potential is introduced which allows chemical potential to be expressed in an analogous manner to electrical volts thus allowing engineering intuition to be applied to biomolecular systems. Redox reactions, and their representation by half-reactions, are key components of biological systems which involve both electrical and chemical domains. A bond graph interpretation of redox reactions is given which combines bond graphs with the Faraday-equivalent chemical potential. This approach is particularly relevant when the biomolecular system implements chemoelectrical transduction – for example chemiosmosis within the key metabolic pathway of mitochondria: oxidative phosphorylation. An alternative way of implementing computational modularity using bond graphs is introduced and used to give a physically based model of the mitochondrial electron transport chain To illustrate the overall approach, this model is analyzed using the Faraday-equivalent chemical potential approach and engineering intuition is used to guide affinity equalisation: a energy based analysis of the mitochondrial electron transport chain.

[1]  Edmund J Crampin,et al.  Changes in mitochondrial morphology and organization can enhance energy supply from mitochondrial oxidative phosphorylation in diabetic cardiomyopathy. , 2017, American journal of physiology. Cell physiology.

[2]  Edmund J Crampin,et al.  Energy-based analysis of biomolecular pathways , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Edmund J. Crampin,et al.  Bond graph modelling of chemoelectrical energy transduction , 2015, 1512.00956.

[4]  P. Gawthrop Bond-Graph Modelling and Causal Analysis of Biomolecular Systems , 2017 .

[5]  Wolfgang Borutzky,et al.  Bond Graphs for Modelling, Control and Fault Diagnosis of Engineering Systems , 2017 .

[6]  V. Shankar,et al.  Units and Dimensions , 2017 .

[7]  S. Nath The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation. , 2016, Biophysical chemistry.

[8]  A. Vinogradov,et al.  Oxidation of NADH and ROS production by respiratory complex I. , 2016, Biochimica et biophysica acta.

[9]  Peter Hunter,et al.  The Virtual Physiological Human: The Physiome Project Aims to Develop Reproducible, Multiscale Models for Clinical Practice , 2016, IEEE Pulse.

[10]  Jason N Bazil,et al.  Catalytic Coupling of Oxidative Phosphorylation, ATP Demand, and Reactive Oxygen Species Generation. , 2016, Biophysical journal.

[11]  K. Vinnakota,et al.  Feedback Regulation and Time Hierarchy of Oxidative Phosphorylation in Cardiac Mitochondria. , 2016, Biophysical journal.

[12]  Edmund J Crampin,et al.  Modular bond-graph modelling and analysis of biomolecular systems. , 2015, IET systems biology.

[13]  Edmund J. Crampin,et al.  Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases , 2015, PloS one.

[14]  P. Gawthrop,et al.  The Energetic Cost of the Action Potential: Bond Graph Modelling of Electrochemical Energy Transduction in Excitable Membranes , 2015 .

[15]  David M. Evans,et al.  Incorporating Known Genetic Variants Does Not Improve the Accuracy of PSA Testing to Identify High Risk Prostate Cancer on Biopsy , 2015, PloS one.

[16]  T. Soldati,et al.  Reactive oxygen species and mitochondria: A nexus of cellular homeostasis , 2015, Redox biology.

[17]  Edmund J. Crampin,et al.  Hierarchical bond graph modelling of biochemical networks , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  J. Villadsen,et al.  Oxidative phosphorylation revisited , 2015, Biotechnology and bioengineering.

[19]  Edmund J. Crampin,et al.  Virtual Reference Environments: a simple way to make research reproducible , 2014, Briefings Bioinform..

[20]  M. Sarewicz,et al.  Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. , 2015, Physiological reviews.

[21]  M. Nosrati,et al.  An improvement in the calculation of the efficiency of oxidative phosphorylation and rate of energy dissipation in mitochondria , 2014 .

[22]  Manuel Caravaca,et al.  The network simulation method: a useful tool for locating the kinetic-thermodynamic switching point in complex kinetic schemes. , 2014, Physical chemistry chemical physics : PCCP.

[23]  John H. Gennari,et al.  A Reappraisal of How to Build Modular, Reusable Models of Biological Systems , 2014, PLoS Comput. Biol..

[24]  Eldar A. Kasumov,et al.  A mechano-chemiosmotic model for the coupling of electron and proton transfer to ATP synthesis in energy-transforming membranes: a personal perspective , 2014, Photosynthesis Research.

[25]  L. F. Abbott,et al.  A Computational Model of Motor Neuron Degeneration , 2014, Neuron.

[26]  Edmund J Crampin,et al.  Energy-based analysis of biochemical cycles using bond graphs , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Martin Stemmler,et al.  Power Consumption During Neuronal Computation , 2014, Proceedings of the IEEE.

[28]  M. Esposito,et al.  Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws. , 2014, The Journal of chemical physics.

[29]  Gawthrop A tutorial introduction for control engineers , 2014 .

[30]  R. Moreno-Sánchez,et al.  Systems Biology Approaches to Cancer Energy Metabolism , 2014 .

[31]  Sonia Cortassa,et al.  Dynamics of Mitochondrial Redox and Energy Networks: Insights from an Experimental–Computational Synergy , 2014 .

[32]  M. Cloutier,et al.  Metabolomics and In-Silico Analysis Reveal Critical Energy Deregulations in Animal Models of Parkinson’s Disease , 2013, PloS one.

[33]  Filipa L. Sousa,et al.  Early bioenergetic evolution , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  Singiresu S Rao,et al.  A Comparative Study of Evidence Theories in the Modeling, Analysis, and Design of Engineering Systems , 2013 .

[35]  D. Attwell,et al.  Synaptic Energy Use and Supply , 2012, Neuron.

[36]  P. Wellstead,et al.  Feedback motif for the pathogenesis of Parkinson's disease. , 2012, IET systems biology.

[37]  J. Nunnari,et al.  Mitochondria: In Sickness and in Health , 2012, Cell.

[38]  Rodolphe Sepulchre,et al.  Mitochondrion- and Endoplasmic Reticulum-Induced SK Channel Dysregulation as a Potential Origin of the Selective Neurodegeneration in Parkinson’s Disease , 2012 .

[39]  Míriam R. García,et al.  Energetics of Ion Transport in Dopaminergic Substantia nigra Neurons , 2012 .

[40]  P. Wellstead,et al.  Systems Biology of Parkinson's Disease , 2012, Springer New York.

[41]  John H. Gennari,et al.  Physical Properties of Biological Entities: An Introduction to the Ontology of Physics for Biology , 2011, PloS one.

[42]  P. Rich Special Section: Peter Mitchell-50th anniversary of the chemiosmotic theory , 2011 .

[43]  Declan G. Bates,et al.  Feedback Control in Systems Biology , 2011 .

[44]  A. Baracca,et al.  Oxidative phosphorylation in cancer cells. , 2011, Biochimica et biophysica acta.

[45]  John H. Gennari,et al.  Multiple ontologies in action: Composite annotations for biosimulation models , 2011, J. Biomed. Informatics.

[46]  W. Martin,et al.  The energetics of genome complexity , 2010, Nature.

[47]  P. Rich,et al.  The mitochondrial respiratory chain. , 2010, Essays in biochemistry.

[48]  A. Baracca,et al.  Hypoxia and mitochondrial oxidative metabolism. , 2010, Biochimica et biophysica acta.

[49]  Wolfgang Borutzky,et al.  Bond Graph Methodology: Development and Analysis of Multidisciplinary Dynamic System Models , 2009 .

[50]  Michael P. Murphy,et al.  How mitochondria produce reactive oxygen species , 2008, The Biochemical journal.

[51]  L. Kováč Bioenergetics , 2008 .

[52]  B. Zhivotovsky,et al.  Mitochondria in cancer cells: what is so special about them? , 2008, Trends in cell biology.

[53]  Hong Qian,et al.  Chemical Biophysics: Quantitative Analysis of Cellular Systems , 2008 .

[54]  K. Vinnakota,et al.  Computer Modeling of Mitochondrial Tricarboxylic Acid Cycle, Oxidative Phosphorylation, Metabolite Transport, and Electrophysiology* , 2007, Journal of Biological Chemistry.

[55]  P. Gawthrop,et al.  Bond-graph modeling , 2007, IEEE Control Systems.

[56]  G. Drobny,et al.  Physical Chemistry for the Life Sciences , 2007 .

[57]  Brian D. O. Anderson,et al.  Network Analysis and Synthesis: A Modern Systems Theory Approach , 2006 .

[58]  Georg Job,et al.  Chemical potential—a quantity in search of recognition , 2006 .

[59]  D. Wallace A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine , 2005, Annual review of genetics.

[60]  Peter Atkins,et al.  Physical Chemistry for the Life Sciences , 2005 .

[61]  H. Qian,et al.  Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. , 2005, Biophysical chemistry.

[62]  P. Pinton,et al.  pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. , 2005, Biochemical and biophysical research communications.

[63]  Davor Juretić,et al.  The chemical cycle kinetics close to the equilibrium state and electrical circuit analogy , 2004 .

[64]  R. Balaban,et al.  Metabolic Network Control of Oxidative Phosphorylation , 2003, Journal of Biological Chemistry.

[65]  B. Trumpower,et al.  Protonmotive pathways and mechanisms in the cytochrome bc 1 complex , 2003, FEBS letters.

[66]  B. Alberts,et al.  Molecular Biology of the Cell (4th Ed) , 2002 .

[67]  S. Chan,et al.  Structures and proton-pumping strategies of mitochondrial respiratory enzymes. , 2001, Annual review of biophysics and biomolecular structure.

[68]  Dean Karnopp,et al.  System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems , 1999 .

[69]  Peter J. Gawthrop,et al.  Bond graphs, symbolic algebra and the modelling of complex systems , 1998 .

[70]  Peter J. Gawthrop,et al.  Metamodelling: for bond graphs and dynamic systems , 1996 .

[71]  François E. Cellier,et al.  Hierarchical non-linear bond graphs: a unified methodology for modeling complex physical systems , 1992, Simul..

[72]  Dean Karnopp,et al.  Bond graph models for electrochemical energy storage : electrical, chemical and thermal effects , 1990 .

[73]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[74]  T. L. Hill,et al.  Free Energy Transduction and Biochemical Cycle Kinetics , 1988, Springer New York.

[75]  J B Chapman,et al.  Cardiac mechanics and energetics: chemomechanical transduction in cardiac muscle. , 1985, The American journal of physiology.

[76]  Charles A. Pratt The society for computer simulation , 1984, SIML.

[77]  P. Mitchell Keilin's respiratory chain concept and its chemiosmotic consequences. , 1979, Science.

[78]  P. Mitchell,et al.  Possible molecular mechanisms of the protonmotive function of cytochrome systems. , 1976, Journal of theoretical biology.

[79]  A Katchalsky,et al.  Network thermodynamics: dynamic modelling of biophysical systems , 1973, Quarterly Reviews of Biophysics.

[80]  G. Oster,et al.  Network Thermodynamics , 1971, Nature.

[81]  P. Mitchell CHEMIOSMOTIC COUPLING IN OXIDATIVE AND PHOTOSYNTHETIC PHOSPHORYLATION , 1966, Biological reviews of the Cambridge Philosophical Society.

[82]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[83]  Pierre Van Rysselberghe,et al.  Reaction Rates and Affinities , 1958 .

[84]  W. H. Mac Williams Keynote address , 2006, AIEE-IRE '51.

[85]  J. Clerk-Maxwell Remarks on the Mathematical Classification of Physical Quantities , 1869 .