Free vibration analysis of multi-layer graphene nanoribbons incorporating interlayer shear effect via molecular dynamics simulations and nonlocal elasticity

[1]  H. G. Smith,et al.  Lattice Dynamics of Pyrolytic Graphite , 1972 .

[2]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[3]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[4]  Tersoff Energies of fullerenes. , 1992, Physical review. B, Condensed matter.

[5]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[6]  Boris I. Yakobson,et al.  C2F, BN, AND C NANOSHELL ELASTICITY FROM AB INITIO COMPUTATIONS , 2001 .

[7]  Z. C. Tu,et al.  Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number , 2001, cond-mat/0112454.

[8]  Ted Belytschko,et al.  Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule , 2004 .

[9]  Ö. Civalek Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns , 2004 .

[10]  Nanoscale Vibrational Analysis of an Embedded Multi-Layered Graphene Sheet , 2004 .

[11]  K. Liew,et al.  Resonance analysis of multi-layered graphene sheets used as nanoscale resonators , 2005, Nanotechnology.

[12]  K. M. Liew,et al.  Continuum model for the vibration of multilayered graphene sheets , 2005 .

[13]  R. Naghdabadi,et al.  Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium , 2005 .

[14]  Quan Wang,et al.  Wave propagation in carbon nanotubes via nonlocal continuum mechanics , 2005 .

[15]  Haiyan Hu,et al.  FLEXURAL WAVE PROPAGATION IN SINGLE-WALLED CARBON NANOTUBES , 2005 .

[16]  Gui-Rong Liu,et al.  Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity , 2005 .

[17]  K. Liew,et al.  PREDICTING NANOVIBRATION OF MULTI-LAYERED GRAPHENE SHEETS EMBEDDED IN AN ELASTIC MATRIX , 2006 .

[18]  P. Sharma,et al.  An atomistic and non-classical continuum field theoretic perspective of elastic interactions between defects (force dipoles) of various symmetries and application to graphene , 2006 .

[19]  Oded Hod,et al.  Electronic structure and stability of semiconducting graphene nanoribbons. , 2006, Nano letters.

[20]  Wenhui Duan,et al.  CALIBRATION OF NONLOCAL SCALING EFFECT PARAMETER FOR FREE VIBRATION OF CARBON NANOTUBES BY MOLECULAR DYNAMICS , 2007 .

[21]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[22]  C. Wang,et al.  The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes , 2007, Nanotechnology.

[23]  N. M. R. Peres,et al.  Electronic properties of bilayer and multilayer graphene , 2007, 0712.3259.

[24]  K. M. Liew,et al.  Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes , 2008 .

[25]  A. Marini,et al.  Optical properties of graphene nanoribbons: The role of many-body effects , 2007, 0706.0916.

[26]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[27]  Mark A. Locascio,et al.  Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. , 2008, Nature nanotechnology.

[28]  K. Jenkins,et al.  Operation of graphene transistors at gigahertz frequencies. , 2008, Nano letters.

[29]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[30]  Bei Wang,et al.  Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries , 2009 .

[31]  K. Jenkins,et al.  Operation of graphene transistors at gigahertz frequencies. , 2008, Nano letters.

[32]  Rui Huang,et al.  Elastic bending modulus of monolayer graphene , 2009 .

[33]  S. C. Pradhan,et al.  Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models , 2009 .

[34]  P. Koskinen,et al.  Approximate modeling of spherical membranes , 2010, 1010.0067.

[35]  R. Rajapakse,et al.  Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models , 2010 .

[36]  Vivek B Shenoy,et al.  Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene , 2010, Science.

[37]  A. J. Gil,et al.  The bending of single layer graphene sheets: the lattice versus continuum approach , 2010, Nanotechnology.

[38]  Reza Ansari,et al.  Nonlocal plate model for free vibrations of single-layered graphene sheets , 2010 .

[39]  Reza Ansari,et al.  Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain , 2010 .

[40]  J. Charlier,et al.  Bending modes, elastic constants and mechanical stability of graphitic systems , 2010, 1008.3639.

[41]  R. Ansari,et al.  Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity , 2011 .

[42]  R. Ansari,et al.  Nanoscale vibration analysis of embedded multi-layered graphene sheets under various boundary conditions , 2011 .

[43]  Reza Ansari,et al.  Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics , 2011 .

[44]  Xiaoqiao He,et al.  Geometrical nonlinear free vibration of multi-layered graphene sheets , 2011 .

[45]  Yilun Liu,et al.  The interlayer shear effect on graphene multilayer resonators , 2011 .

[46]  E. Jomehzadeh,et al.  A study on large amplitude vibration of multilayered graphene sheets , 2011 .

[47]  S. C. Pradhan,et al.  Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method , 2011 .

[48]  S. Adali Variational principles and natural boundary conditions for multilayered orthotropic graphene sheets undergoing vibrations and based on nonlocal elastic theory , 2011 .

[49]  Heng-An Wu,et al.  Interlayer shear effect on multilayer graphene subjected to bending , 2012 .

[50]  Jin-Xing Shi,et al.  Buckling instability of circular double-layered graphene sheets , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  N. Pugno,et al.  Large amplitude vibration of a bilayer graphene embedded in a nonlinear polymer matrix , 2012 .

[52]  Jin-Xing Shi,et al.  Nonlocal vibration of embedded double-layer graphene nanoribbons in in-phase and anti-phase modes , 2012 .

[53]  R. Lin NANOSCALE VIBRATION CHARACTERIZATION OF MULTI-LAYERED GRAPHENE SHEETS EMBEDDED IN AN ELASTIC MEDIUM , 2012 .

[54]  K. Liew,et al.  Analysis of nonlinear forced vibration of multi-layered graphene sheets , 2012 .

[55]  Reza Ansari,et al.  Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models , 2012 .

[56]  R. Lin Nanoscale vibration characteristics of multi-layered graphene sheets , 2012 .

[57]  Quan Wang,et al.  A Review on the Application of Nonlocal Elastic Models in Modeling of Carbon Nanotubes and Graphenes , 2012 .

[58]  R. Nazemnezhad,et al.  AN EXACT ANALYTICAL SOLUTION FOR FREE VIBRATION OF FUNCTIONALLY GRADED CIRCULAR/ANNULAR MINDLIN NANOPLATES VIA NONLOCAL ELASTICITY , 2013 .

[59]  R. Nazemnezhad,et al.  Buckling of circular/annular Mindlin nanoplates via nonlocal elasticity , 2013 .

[60]  Ch. Zhang,et al.  Improved beam theory for multilayer graphene nanoribbons with interlayer shear effect , 2013 .

[61]  S. A. H. Kordkheili,et al.  Mechanical properties of double-layered graphene sheets , 2013 .

[62]  Hui‐Shen Shen,et al.  Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity , 2013 .

[63]  Wei Lu,et al.  A continuum model for the static pull-in behavior of graphene nanoribbon electrostatic actuators with interlayer shear and surface energy effects , 2013 .

[64]  R. Nazemnezhad,et al.  AN EXACT ANALYTICAL APPROACH FOR FREE VIBRATION OF MINDLIN RECTANGULAR NANO-PLATES VIA NONLOCAL ELASTICITY , 2013 .

[65]  Martin L. Dunn,et al.  Bending rigidity and Gaussian bending stiffness of single-layered graphene. , 2013, Nano letters.

[66]  Q. Han,et al.  Prediction of the nonlocal scaling parameter for graphene sheet , 2014 .