Existence of strong solutions for a system of interaction between a compressible viscous fluid and a wave equation

In this article, we consider a fluid–structure interaction system where the fluid is viscous and compressible and where the structure is a part of the boundary of the fluid domain and is deformable. The fluid is governed by the barotropic compressible Navier–Stokes system, whereas the structure displacement is described by a wave equation. We show that the corresponding coupled system admits a unique, strong solution for an initial fluid density and an initial fluid velocity in H 3 and for an initial deformation and an initial deformation velocity in H 4 and H 3 respectively. The reference configuration for the fluid domain is a rectangular cuboid with the elastic structure being the top face. We use a modified Lagrangian change of variables to transform the moving fluid domain into the rectangular cuboid and then analyze the corresponding linear system coupling a transport equation (for the density), a heat-type equation, and a wave equation. The corresponding results for this linear system and estimations of the coefficients coming from the change of variables allow us to perform a fixed point argument and to prove the existence and uniqueness of strong solutions for the nonlinear system, locally in time.

[1]  Takéo Takahashi,et al.  Existence and uniqueness of strong solutions for the system of interaction between a compressible Navier–Stokes–Fourier fluid and a damped plate equation , 2021, Nonlinear Analysis: Real World Applications.

[2]  Dominic Breit,et al.  Navier-Stokes-Fourier fluids interacting with elastic shells , 2021, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.

[3]  Srdjan Trifunovi'c,et al.  Compressible Fluids Interacting with Plates: Regularity and Weak-Strong Uniqueness , 2021, Journal of Mathematical Fluid Mechanics.

[4]  Yaguang Wang,et al.  Weak solution to the incompressible viscous fluid and a thermoelastic plate interaction problem in 3D , 2020, Acta Mathematica Scientia.

[5]  Sourav Mitra Local Existence of Strong Solutions of a Fluid–Structure Interaction Model , 2020, Journal of Mathematical Fluid Mechanics.

[6]  R. Denk,et al.  Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-theory for a fluid–structure interaction model , 2020, Zeitschrift für angewandte Mathematik und Physik.

[7]  Debayan Maity,et al.  Maximal-in-Time Existence and Uniqueness of Strong Solution of a 3D Fluid-Structure Interaction Model , 2020, SIAM J. Math. Anal..

[8]  Takéo Takahashi,et al.  Gevrey Regularity for a System Coupling the Navier-Stokes System with a Beam: the Non-Flat Case , 2019, Funkcialaj Ekvacioj.

[9]  Takéo Takahashi,et al.  Stabilization of a rigid body moving in a compressible viscous fluid , 2019, Journal of Evolution Equations.

[10]  Takéo Takahashi,et al.  Lp theory for the interaction between the incompressible Navier-Stokes system and a damped beam , 2019 .

[11]  Céline Grandmont,et al.  Existence of local strong solutions to fluid–beam and fluid–rod interaction systems , 2019, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[12]  Imene Aicha Djebour,et al.  On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions , 2019, Journal of Mathematical Fluid Mechanics.

[13]  Takéo Takahashi,et al.  Gevrey Regularity for a System Coupling the Navier-Stokes System with a Beam Equation , 2019, SIAM J. Math. Anal..

[14]  Srdjan Trifunovi'c,et al.  Existence of a weak solution to the fluid-structure interaction problem in 3D , 2018, Journal of Differential Equations.

[15]  S. Mitra,et al.  Local Existence of Strong Solutions of a Fluid–Structure Interaction Model , 2018, Journal of Mathematical Fluid Mechanics.

[16]  M. Bravin Energy Equality and Uniqueness of Weak Solutions of a “Viscous Incompressible Fluid + Rigid Body” System with Navier Slip-with-Friction Conditions in a 2D Bounded Domain , 2018, Journal of Mathematical Fluid Mechanics.

[17]  Bernhard H. Haak,et al.  Mathematical analysis of the motion of a rigid body in a compressible Navier–Stokes–Fourier fluid , 2017, Mathematische Nachrichten.

[18]  Jean-J'erome Casanova Fluid–structure system with boundary conditions involving the pressure , 2017, Journal of Evolution Equations.

[19]  D. Breit,et al.  Compressible Fluids Interacting with a Linear-Elastic Shell , 2017, 1704.06479.

[20]  Pelin G. Geredeli,et al.  Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary , 2017, 1703.10855.

[21]  M. Boulakia,et al.  On the interaction problem between a compressible fluid and a Saint-Venant Kirchhoff elastic structure , 2017, Advances in Differential Equations.

[22]  Jan Prüss,et al.  Moving Interfaces and Quasilinear Parabolic Evolution Equations , 2016 .

[23]  R. Denk,et al.  A structurally damped plate equation with Dirichlet-Neumann boundary conditions , 2015 .

[24]  C. Grandmont,et al.  Existence of Global Strong Solutions to a Beam–Fluid Interaction System , 2015, Archive for Rational Mechanics and Analysis.

[25]  Matthias Hieber,et al.  The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids , 2015 .

[26]  Daniel Lengeler,et al.  Weak Solutions for An Incompressible, Generalized Newtonian Fluid Interacting with a Linearly Elastic Koiter Type Shell , 2014, SIAM J. Math. Anal..

[27]  D. Lengeler,et al.  Weak Solutions for an Incompressible Newtonian Fluid Interacting with a Koiter Type Shell , 2013, Archive for Rational Mechanics and Analysis.

[28]  Julien Lequeurre,et al.  Existence of Strong Solutions for a System Coupling the Navier–Stokes Equations and a Damped Wave Equation , 2012, Journal of Mathematical Fluid Mechanics.

[29]  Boris Muha,et al.  Existence of a Weak Solution to a Nonlinear Fluid–Structure Interaction Problem Modeling the Flow of an Incompressible, Viscous Fluid in a Cylinder with Deformable Walls , 2012, Archive for Rational Mechanics and Analysis.

[30]  O. Glass,et al.  Uniqueness Results for Weak Solutions of Two-Dimensional Fluid–Solid Systems , 2012, Archive for Rational Mechanics and Analysis.

[31]  Julien Lequeurre,et al.  Existence of Strong Solutions to a Fluid-Structure System , 2011, SIAM J. Math. Anal..

[32]  Jean-Pierre Raymond,et al.  Feedback Stabilization of a Fluid-Structure Model , 2010, SIAM J. Control. Optim..

[33]  Steve Shkoller,et al.  The Interaction of the 3D Navier-Stokes Equations with a Moving Nonlinear Koiter Elastic Shell , 2010, SIAM J. Math. Anal..

[34]  M. Boulakia,et al.  A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations , 2009 .

[35]  Daniel Coutand,et al.  Navier-Stokes Equations Interacting with a Nonlinear Elastic Biofluid Shell , 2007, SIAM J. Math. Anal..

[36]  M. Boulakia Existence of Weak Solutions for the Three-Dimensional Motion of an Elastic Structure in an Incompressible Fluid , 2007 .

[37]  J. Prüss,et al.  Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data , 2007 .

[38]  Alain Bensoussan,et al.  Representation and Control of Infinite Dimensional Systems (Systems & Control: Foundations & Applications) , 2006 .

[39]  Céline Grandmont,et al.  Existence of Weak Solutions for the Unsteady Interaction of a Viscous Fluid with an Elastic Plate , 2005, SIAM J. Math. Anal..

[40]  M. Boulakia Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid , 2005 .

[41]  Yoshihiro Shibata,et al.  On a resolvent problem for the linearized system from the dynamical system describing the compressible viscous fluid motion , 2004 .

[42]  H. B. Veiga On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem , 2004 .

[43]  Robert Denk,et al.  Fourier multipliers and problems of elliptic and parabolic type , 2003 .

[44]  E. Feireisl,et al.  On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations , 2001 .

[45]  Lutz Weis,et al.  Operator–valued Fourier multiplier theorems and maximal $L_p$-regularity , 2001 .

[46]  Fabien Flori,et al.  Fluid-structure interaction : analysis of a 3-D compressible model , 2000 .

[47]  Alfio Quarteroni,et al.  Computational vascular fluid dynamics: problems, models and methods , 2000 .

[48]  Pierre-Louis Lions,et al.  Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .

[49]  Takaaki Nishida,et al.  Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids , 1983 .

[50]  Glenn F. Webb,et al.  Existence and Asymptotic Behavior for a Strongly Damped Nonlinear Wave Equation , 1980, Canadian Journal of Mathematics.

[51]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[52]  A. Tani On the First Initial-Boundary Value Problem of Compressible Viscous Fluid Motion , 1977 .

[53]  M. Tucsnak,et al.  A Maximal Regularity Approach to the Analysis of Some Particulate Flows , 2017 .

[54]  S. Čanić,et al.  Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy , 2015 .

[55]  I. Chueshov Dynamics of a nonlinear elastic plate interacting with a linearized compressible viscous fluid , 2014 .

[56]  D. Lengeler,et al.  Weak Solutions for an Incompressible Newtonian Fluid Interacting with a Koiter Type Shell , 2014 .

[57]  Boris Muha,et al.  A nonlinear, 3D fluid-structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof , 2013, Commun. Inf. Syst..

[58]  C. Simader,et al.  Direct methods in the theory of elliptic equations , 2012 .

[59]  E. Lor Semilinear parabolic problems , 2011 .

[60]  S. Mitter,et al.  Representation and Control of Infinite Dimensional Systems , 1992 .

[61]  A. Matsumura,et al.  Initial Boundary Value Problems for the Equations of Motion of General Fluids , 1982 .

[62]  Takaaki Nishida,et al.  The initial value problem for the equations of motion of viscous and heat-conductive gases , 1980 .