Parametrization of a convex optimization problem by optimal control theory and proof of a Goldberg conjecture

Curves which can be rotated freely in an n-gon (that is, a regular polygon with n sides) so that they always remain in contact with every side of the n-gon are called rotors. The problem of finding the rotor with minimal area is considered and is formulated into an optimal control problem using the support function of a convex body. By the Pontryagin maximum principle and an extension of Noether's Theorem in optimal control theory, extremal controls are computed. As a consequence, a minimizer is necessarily a regular rotor, which proves a conjecture formulated in 1957 by Goldberg (see).

[1]  Symmetrischen-Orbiformen kleinsten Inhalts , 1969 .

[2]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[3]  H. Groemer,et al.  Convex Bodies of Constant Width , 1983 .

[4]  On some Problems of Maxima and Minima for the Curve of Constant Breadth and the In-revolvable Curve of the Equilateral Triangle , 1917 .

[5]  Michael Goldberg Trammel Rotors in Regular Polygons , 1957 .

[6]  Leo F. Boron,et al.  Theory of Convex Bodies , 1988 .

[7]  B. Dacorogna Introduction to the calculus of variations , 2004 .

[8]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[9]  T. Bayen,et al.  Analytic Parametrization of Three-Dimensional Bodies of Constant Width , 2007 .

[10]  Térence Bayen Analytical Parameterization of Rotors and Proof of a Goldberg Conjecture by Optimal Control Theory , 2009, SIAM J. Control. Optim..

[11]  Beweis einer Vermutung übern-Orbiformen kleinsten Inhalts , 1975 .

[12]  Ben Schweizer,et al.  Existence and approximation results for shape optimization problems in rotordynamics , 2008, Numerische Mathematik.

[13]  Ralph Howard Convex bodies of constant width and constant brightness , 2003 .

[14]  Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts , 1915 .

[15]  On the Noether Invariance Principle for Constrained Optimal Control Problems , 2004, math/0407409.

[16]  Evans M. Harrell A direct proof of a theorem of Blaschke and Lebesgue , 2000 .

[17]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[18]  J. A. Andrejewa,et al.  Zur analytischen Lösung geometrischer Optimierungsaufgaben mittels Dualität bei Steuerungsproblemen. Teil I , 1984 .