Supermassive star formation via episodic accretion: protostellar disc instability and radiative feedback efficiency

The formation of SMSs is a potential pathway to seed SMBHs in the early universe. A critical issue for forming SMSs is stellar UV feedback, which may limit the stellar mass growth via accretion. In this paper we study the evolution of an accreting SMS and its UV emissivity under conditions of realistic variable accretion from a self-gravitating circumstellar disc. First we conduct a 2D hydrodynamical simulation to follow the long-term protostellar accretion until the stellar mass exceeds $10^4~M_\odot$. The disc fragments due to gravitational instability, creating a number of small clumps that rapidly migrate inward to fall onto the star. The resulting accretion history is thus highly time-dependent: short episodic accretion bursts are followed by longer, relative quiescent phases. We show that the circumstellar disc for the so-called direct collapse model is more unstable and generates greater variability over shorter timescales than normal Pop III cases. We conduct a post-process stellar evolution calculation using the obtained accretion history. Our results show that, regardless of the strong variability of the accretion rates, the stellar radius monotonically increases with almost constant effective temperature at $T_{\rm eff} \simeq 5000$ K as the stellar mass increases. The resulting UV feedback is too weak to hinder mass accretion due to the low flux of stellar UV photons, thus verifying our implicit assumption of no stellar feedback during the hydrodynamic simulations. The insensitivity of stellar evolution to variable accretion is attributed to the fact that typical timescales of variability, $\lesssim 10^3$ years, are too short to affect the stellar structure. We argue that this evolution will continue until the SMS eventually collapses to produce a massive black hole by the general relativistic instability after the stellar mass reaches $\gtrsim 10^5~M_\odot$.

[1]  K. Ioka,et al.  CAN DIRECT COLLAPSE BLACK HOLES LAUNCH GAMMA-RAY BURSTS AND GROW TO SUPERMASSIVE BLACK HOLES? , 2015, 1506.05802.

[2]  N. Yoshida,et al.  Formation of primordial supermassive stars by burst accretion , 2015, 1505.03954.

[3]  M. Volonteri,et al.  Assessing inflow rates in atomic cooling haloes: implications for direct collapse black holes , 2015, 1504.00263.

[4]  S. Basu,et al.  VARIABLE PROTOSTELLAR ACCRETION WITH EPISODIC BURSTS , 2015, 1503.07888.

[5]  Xiaohui Fan,et al.  An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30 , 2015, Nature.

[6]  V. Springel,et al.  Formation of massive protostars in atomic cooling haloes , 2014, 1409.3572.

[7]  M. Latif,et al.  The formation of supermassive black holes in rapidly rotating disks , 2014, 1411.5902.

[8]  M. Dunham,et al.  On the reliability of protostellar disc mass measurements and the existence of fragmenting discs , 2014, 1407.6955.

[9]  K. Omukai,et al.  The critical radiation intensity for direct collapse black hole formation: dependence on the radiation spectral shape , 2014, 1407.4039.

[10]  Z. Haiman,et al.  Does disc fragmentation prevent the formation of supermassive stars in protogalaxies , 2014, 1406.5058.

[11]  Z. Haiman,et al.  H2 suppression with shocking inflows: testing a pathway for supermassive black hole formation , 2014, 1401.5803.

[12]  K. Omukai,et al.  Gravitational instability in protostellar discs at low metallicities , 2014, 1401.2993.

[13]  P. Johansson,et al.  Numerical resolution effects on simulations of massive black hole seeds , 2013, 1312.4962.

[14]  Queen Mary,et al.  DISCOVERY OF THREE z > 6.5 QUASARS IN THE VISTA KILO-DEGREE INFRARED GALAXY (VIKING) SURVEY , 2013, 1311.3666.

[15]  N. Yoshida,et al.  FORMATION OF PRIMORDIAL SUPERMASSIVE STARS BY RAPID MASS ACCRETION , 2013, 1308.4457.

[16]  Y. University,et al.  Fragmenting protostellar discs: properties and observational signatures , 2013, 1306.4074.

[17]  F. Palla,et al.  Massive black hole factories: Supermassive and quasi-star formation in primordial halos , 2013, 1305.5923.

[18]  E. Vorobyov Formation of giant planets and brown dwarfs on wide orbits , 2013 .

[19]  S. Basu,et al.  THE BURST MODE OF ACCRETION IN PRIMORDIAL PROTOSTARS , 2013, 1303.3622.

[20]  M. Volonteri The Formation and Evolution of Massive Black Holes , 2012, Science.

[21]  R. Klessen,et al.  Formation and evolution of primordial protostellar systems , 2012, 1202.5552.

[22]  K. Inayoshi,et al.  Supermassive black hole formation by cold accretion shocks in the first galaxies , 2012, 1202.5380.

[23]  R. Klessen,et al.  Variable accretion rates and fluffy first stars , 2011, 1112.4157.

[24]  N. Yoshida,et al.  Protostellar Feedback Halts the Growth of the First Stars in the Universe , 2011, Science.

[25]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[26]  Shu-ichiro Inutsuka,et al.  RECURRENT PLANET FORMATION AND INTERMITTENT PROTOSTELLAR OUTFLOWS INDUCED BY EPISODIC MASS ACCRETION , 2011, 1101.1997.

[27]  Sergei Nayakshin,et al.  A numerical simulation of a 'Super-Earth' core delivery from ~100 to ~8 au , 2010, 1010.1489.

[28]  Canada,et al.  THE BURST MODE OF ACCRETION AND DISK FRAGMENTATION IN THE EARLY EMBEDDED STAGES OF STAR FORMATION , 2010, 1007.2993.

[29]  M. Christmann,et al.  Total synthesis: towards artificial terpene cyclases. , 2010, Nature chemistry.

[30]  S. Inutsuka,et al.  FORMATION PROCESS OF THE CIRCUMSTELLAR DISK: LONG-TERM SIMULATIONS IN THE MAIN ACCRETION PHASE OF STAR FORMATION , 2010, 1001.1404.

[31]  Berkeley,et al.  ON THE ROLE OF DISKS IN THE FORMATION OF STELLAR SYSTEMS: A NUMERICAL PARAMETER STUDY OF RAPID ACCRETION , 2009, 0907.3476.

[32]  Canada,et al.  Secular evolution of viscous and self-gravitating circumstellar discs , 2008, 0812.1306.

[33]  K. Omukai,et al.  EVOLUTION OF MASSIVE PROTOSTARS WITH HIGH ACCRETION RATES , 2008, 0806.4122.

[34]  Z. Haiman,et al.  Can Supermassive Black Holes Form in Metal-enriched High-Redshift Protogalaxies? , 2008, 0804.3141.

[35]  C. McKee,et al.  The Formation of the First Stars. II. Radiative Feedback Processes and Implications for the Initial Mass Function , 2007, 0711.1377.

[36]  T. Henning,et al.  Massive Star Formation: Observations Confront Theory , 2008 .

[37]  S. Basu,et al.  The Burst Mode of Protostellar Accretion , 2006, astro-ph/0607118.

[38]  Cambridge,et al.  Supermassive black hole formation during the assembly of pre-galactic discs , 2006, astro-ph/0606159.

[39]  M. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[40]  K. Omukai,et al.  Thermal and Fragmentation Properties of Star-forming Clouds in Low-Metallicity Environments , 2005, astro-ph/0503010.

[41]  J. Brinkmann,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars , 2004, astro-ph/0405138.

[42]  J. Goodman,et al.  Supermassive Stars in Quasar Disks , 2003, astro-ph/0307361.

[43]  V. Narayanan,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6 , 2003, astro-ph/0301135.

[44]  A. Loeb,et al.  Formation of the First Supermassive Black Holes , 2002, astro-ph/0212400.

[45]  S. Shapiro,et al.  Collapse of a Rotating Supermassive Star to a Supermassive Black Hole: Fully Relativistic Simulations , 2002, astro-ph/0205091.

[46]  William R. Ward,et al.  Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration , 2002 .

[47]  Richard I. Klein,et al.  The Jeans Condition: A New Constraint on Spatial Resolution in Simulations of Isothermal Self-Gravitational Hydrodynamics , 1997 .

[48]  S. Basu A Semianalytic Model for Supercritical Core Collapse: Self-Similar Evolution and the Approach to Protostar Formation , 1997 .

[49]  M. Norman,et al.  ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. II - The magnetohydrodynamic algorithms and tests , 1992 .

[50]  Frank H. Shu,et al.  The physics of astrophysics. , 1992 .

[51]  H. Yorke The Dynamical Evolution of H II Regions—Recent Theoretical Developments , 1986 .

[52]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[53]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .