A foreground detection system for automatic surveillance

[1]  Michael J. Black,et al.  A Framework for Robust Subspace Learning , 2003, International Journal of Computer Vision.

[2]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[3]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[4]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[5]  Mohan M. Trivedi,et al.  Analysis and detection of shadows in video streams: a comparative evaluation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[6]  Berna Erol,et al.  A Bayesian framework for Gaussian mixture background modeling , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[7]  Jitendra Malik,et al.  Motion segmentation and tracking using normalized cuts , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[8]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[9]  François Brémond,et al.  ETISEO, performance evaluation for video surveillance systems , 2007, 2007 IEEE Conference on Advanced Video and Signal Based Surveillance.

[10]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[11]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[12]  Paul W. Fieguth,et al.  Color-based tracking of heads and other mobile objects at video frame rates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Manuele Bicego,et al.  Integrated region- and pixel-based approach to background modelling , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[14]  Michael Harville,et al.  A Framework for High-Level Feedback to Adaptive, Per-Pixel, Mixture-of-Gaussian Background Models , 2002, ECCV.

[15]  Tim J. Ellis,et al.  Learning semantic scene models from observing activity in visual surveillance , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  D. Donoho For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .

[17]  Ke Huang,et al.  Sparse Representation for Signal Classification , 2006, NIPS.

[18]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[19]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[20]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  James W. Davis,et al.  The representation and recognition of human movement using temporal templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Xin Li,et al.  Contour-based object tracking with occlusion handling in video acquired using mobile cameras , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Nikos Paragios,et al.  Motion-based background subtraction using adaptive kernel density estimation , 2004, CVPR 2004.

[24]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[25]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Kevin W. Bowyer,et al.  Face recognition technology: security versus privacy , 2004, IEEE Technology and Society Magazine.

[27]  Thomas S. Huang,et al.  Robust estimation of foreground in surveillance videos by sparse error estimation , 2008, 2008 19th International Conference on Pattern Recognition.

[28]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  David P. Farrington,et al.  Effects of Closed-Circuit Television on Crime , 2003 .

[30]  Bruno A. Olshausen,et al.  Learning Sparse Image Codes using a Wavelet Pyramid Architecture , 2000, NIPS.

[31]  Michal Irani,et al.  Recovery of ego-motion using image stabilization , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Mubarak Shah,et al.  A hierarchical approach to robust background subtraction using color and gradient information , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[33]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[34]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[35]  Fatih Porikli,et al.  Human Body Tracking by Adaptive Background Models and Mean-Shift Analysis , 2003 .

[36]  Yoshiaki Shirai,et al.  Panoramic View-Based Navigation in Outdoor Environments Based on Support Vector Learning , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[38]  Jake K. Aggarwal,et al.  Segmentation and recognition of continuous human activity , 2001, Proceedings IEEE Workshop on Detection and Recognition of Events in Video.

[39]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.