Rare “Janus”-faced single-molecule magnet exhibiting intramolecular ferromagnetic interactions† †Electronic supplementary information (ESI) available: Spectroscopy data, crystallographic data and tables, and magnetism details. CCDC 1850963. For ESI and crystallographic data in CIF or other electroni

The unusual ferromagnetically coupled compound was prepared by the use of Me3SiN3 with the metal ions being exclusively bridged by end-on N3–. Th cationic molecule is a rare example of a 3d-metal cluster exhibiting a “Janus”-faced SMM behavior for the dried and wet forms.

[1]  J. Long,et al.  Large Anisotropy Barrier in a Tetranuclear Single-Molecule Magnet Featuring Low-Coordinate Cobalt Centers. , 2018, Journal of the American Chemical Society.

[2]  Kevan S. Quinn,et al.  Transition Metal Single-Molecule Magnets: A {Mn31} Nanosized Cluster with a Large Energy Barrier of ∼60 K and Magnetic Hysteresis at ∼5 K. , 2017, Journal of the American Chemical Society.

[3]  N. Tyagi,et al.  The design of synthetic superoxide dismutase mimetics: seven-coordinate water soluble manganese(ii) and iron(ii) complexes and their superoxide dismutase-like activity studies. , 2017, Dalton transactions.

[4]  M. Shatruk,et al.  A Simple Approach for Predicting the Spin State of Homoleptic Fe(II) Tris-diimine Complexes. , 2017, Journal of the American Chemical Society.

[5]  K. Vignesh,et al.  What Controls the Magnetic Exchange and Anisotropy in a Family of Tetranuclear {Mn2IIMn2III} Single-Molecule Magnets? , 2017, Inorganic chemistry.

[6]  L. Chibotaru,et al.  Multiple relaxation times in single-molecule magnets , 2016, 1607.07576.

[7]  You Song,et al.  Two field-induced slow magnetic relaxation processes in a mononuclear Co(ii) complex with a distorted octahedral geometry. , 2016, Dalton transactions.

[8]  A. Tasiopoulos,et al.  Filling the gap between the quantum and classical worlds of nanoscale magnetism: giant molecular aggregates based on paramagnetic 3d metal ions. , 2016, Chemical Society reviews.

[9]  M. Murugesu,et al.  The rise of 3-d single-ion magnets in molecular magnetism: towards materials from molecules? , 2015, Chemical science.

[10]  R. Boča,et al.  A mononuclear Ni(ii) complex: a field induced single-molecule magnet showing two slow relaxation processes. , 2015, Dalton transactions.

[11]  J. Long,et al.  Radical ligand-containing single-molecule magnets , 2015 .

[12]  M. Murugesu,et al.  Exposing the intermolecular nature of the second relaxation pathway in a mononuclear cobalt(II) single-molecule magnet with positive anisotropy. , 2015, Dalton transactions.

[13]  K. Vignesh,et al.  What controls the magnetic exchange interaction in mixed- and homo-valent Mn7 disc-like clusters? A theoretical perspective. , 2015, Chemistry.

[14]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[15]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[16]  L. Cunha-Silva,et al.  New classes of ferromagnetic materials with exclusively end-on azido bridges: from single-molecule magnets to 2 D molecule-based magnets. , 2014, Chemistry.

[17]  S. Perlepes,et al.  The bridging azido ligand as a central “player” in high-nuclearity 3d-metal cluster chemistry , 2014 .

[18]  G. Rajaraman,et al.  Can anisotropic exchange be reliably calculated using density functional methods? A case study on trinuclear Mn(III)-M(III)-Mn(III) (M=Fe, Ru, and Os) cyanometalate single-molecule magnets. , 2014, Chemistry.

[19]  R. Crabtree,et al.  Influence of the ligand field on slow magnetization relaxation versus spin crossover in mononuclear cobalt complexes. , 2013, Angewandte Chemie.

[20]  Donald G Truhlar,et al.  Single-ion magnetic anisotropy and isotropic magnetic couplings in the metal-organic framework Fe2(dobdc). , 2013, Inorganic chemistry.

[21]  Frank Neese,et al.  Magnetic blocking in a linear iron(I) complex. , 2013, Nature chemistry.

[22]  R. Winpenny,et al.  Lanthanide single-molecule magnets. , 2013, Chemical reviews.

[23]  Joseph M. Zadrozny,et al.  Slow magnetization dynamics in a series of two-coordinate iron(II) complexes , 2013 .

[24]  K. Vignesh,et al.  Iron(II) Complexes of Two Amine/Imine N5 Chelate Ligands Containing a 1,4-Diazepane Core – To Crossover or Not To Crossover , 2013 .

[25]  W. Wernsdorfer,et al.  Electronic read-out of a single nuclear spin using a molecular spin transistor , 2012, Nature.

[26]  Fernando Luis,et al.  Design of magnetic coordination complexes for quantum computing. , 2012, Chemical Society reviews.

[27]  Joseph M. Zadrozny,et al.  Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2-. , 2011, Journal of the American Chemical Society.

[28]  J. Long,et al.  Exploiting single-ion anisotropy in the design of f-element single-molecule magnets , 2011 .

[29]  P. D. Brown,et al.  Encapsulation of single-molecule magnets in carbon nanotubes. , 2011, Nature communications.

[30]  J. Long,et al.  Slow magnetic relaxation in a family of trigonal pyramidal iron(II) pyrrolide complexes. , 2010, Journal of the American Chemical Society.

[31]  S. P. Rath,et al.  Synthesis and characterization of anti-bisFe(III) porphyrins, syn-bisFe(III)-mu-oxo porphyrin, and syn-bisFe(III)-mu-oxo porphyrin cation radical. , 2010, Inorganic chemistry.

[32]  Koen Binnemans,et al.  Lanthanide-based luminescent hybrid materials. , 2009, Chemical reviews.

[33]  Ayuk M Ako,et al.  Molecular magnets containing wheel motifs. , 2009, Inorganic chemistry.

[34]  G. Christou,et al.  The Drosophila of single-molecule magnetism: [Mn12O12(O2CR)16(H2O)4]. , 2009, Chemical Society reviews.

[35]  B. Donnadieu,et al.  A family of enneanuclear iron(II) single-molecule magnets. , 2008, Chemistry.

[36]  L. MacGillivray,et al.  Ferromagnetic coupling in a 1D coordination polymer containing a symmetric [Cu(mu1,1-N3)2Cu(mu1,1-N3)2Cu]2+ core and based on an organic ligand obtained from the solid state. , 2007, Inorganic chemistry.

[37]  Y. Sanakis,et al.  A Diferrous Single-Molecule Magnet , 2007 .

[38]  W. Wernsdorfer,et al.  A record anisotropy barrier for a single-molecule magnet. , 2007, Journal of the American Chemical Society.

[39]  Robin Taylor,et al.  Mercury: visualization and analysis of crystal structures , 2006 .

[40]  W. Wernsdorfer,et al.  The properties of the [Mn12O12(O2CR)16(H2O)4] single-molecule magnets in truly axial symmetry: [Mn12O12(O2CCH2Br)16(H2O)4].4CH2Cl2. , 2006, Journal of the American Chemical Society.

[41]  Y. Kitagawa,et al.  Theoretical studies on ferrimagnetic behavior of TCNE and manganese porphyrin dimer , 2005 .

[42]  S. Alvarez,et al.  Theoretical determination of the exchange coupling constants of a single-molecule magnet Fe10 complex , 2005 .

[43]  Motohiro Nakano,et al.  Single-molecule magnets of ferrous cubes: structurally controlled magnetic anisotropy. , 2004, Journal of the American Chemical Society.

[44]  A. Harrison,et al.  Structural, magnetic and DFT studies of a hydroxide-bridged [Cr8] wheel. , 2004, Dalton transactions.

[45]  F. Neese,et al.  Calculating the electron paramagnetic resonance parameters of exchange coupled transition metal complexes using broken symmetry density functional theory: application to a MnIII/MnIV model compound. , 2004, Journal of the American Chemical Society.

[46]  A. Caneschi,et al.  Theoretical study of the magnetic behavior of hexanuclear Cu(II) and Ni(II) polysiloxanolato complexes. , 2003, Journal of the American Chemical Society.

[47]  L. Sorace,et al.  Hints for the Control of Magnetic Anisotropy in Molecular Materials , 2001 .

[48]  L. Que,et al.  Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species. , 2001, Journal of the American Chemical Society.

[49]  I. Guzei,et al.  Single-molecule magnets: Jahn-Teller isomerism and the origin of two magnetization relaxation processes in Mn12 complexes. , 2001, Inorganic chemistry.

[50]  William T. Pennington,et al.  DIAMOND– Visual Crystal Structure Information System , 1999 .

[51]  Teresa Poerio,et al.  Ferromagnetic Coupling in the Bis(μ‐end‐on‐azido)iron(III) Dinuclear Complex Anion of [FeII(bpym)3]2[Fe 2III(N3)10]·2H2O , 1997 .

[52]  T. Rojo,et al.  Ferromagnetic Interactions in the First Bis(.mu.-end-on-azido)manganese(II) Dinuclear Compound: [Mn(terpy)(N3)2]2.cntdot.2H2O , 1994 .

[53]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[54]  J. Ribas,et al.  Ferromagnetic nickel(II) polynuclear complexes with end-on azido as bridging ligand. The first nickel(II)-azido one-dimensional ferromagnetic systems , 1994 .

[55]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[56]  R. Williams,et al.  EXCHANGE OF Br$sup 80$ ATOMS WITH BROMOOLEFINS INDUCED REARRANGEMENT OF THE BROMOPROPENES , 1952 .

[57]  Philip W. Anderson,et al.  Antiferromagnetism. Theory of Superexchange Interaction , 1950 .

[58]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[59]  Frank Neese,et al.  A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes with single-molecule magnet behavior , 2013 .

[60]  Frank Neese,et al.  The ORCA program system , 2012 .

[61]  F. Totti,et al.  DFT description of the magnetic structure of polynuclear transition-metal clusters: The complexes [{Cu(bpca)2(H2O)2}{Cu(NO3)2}2], (bpca = Bis(2-pyridylcarbonyl)amine), and [Cu(DBSQ)(C2H5O)]2, (DBSQ = 3,5-di-tert-butyl-semiquinonato) , 2005 .

[62]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .