Experimental Automatic Calibration of a Semi-Active Suspension Controller via Bayesian Optimization

[1]  John Lygeros,et al.  Cascade Control: Data-Driven Tuning Approach Based on Bayesian Optimization , 2020, IFAC-PapersOnLine.

[2]  A. Bemporad Global optimization via inverse distance weighting and radial basis functions , 2019, Computational Optimization and Applications.

[3]  Peter I. Frazier,et al.  A Tutorial on Bayesian Optimization , 2018, ArXiv.

[4]  Marco Gadola,et al.  Reproduction of real-world road profiles on a four-poster rig for indoor vehicle chassis and suspension durability testing , 2017 .

[5]  Andreas Krause,et al.  Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with Bayesian optimization , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Andreas Krause,et al.  Bayesian optimization for maximum power point tracking in photovoltaic power plants , 2016, 2016 European Control Conference (ECC).

[7]  Aaron Klein,et al.  Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets , 2016, AISTATS.

[8]  Stefan Schaal,et al.  Automatic LQR tuning based on Gaussian process global optimization , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[9]  Andreas Krause,et al.  Safe controller optimization for quadrotors with Gaussian processes , 2015, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[11]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[12]  Charles Poussot-Vassal,et al.  Semi-Active Suspension Control Design for Vehicles , 2010 .

[13]  S. Ounpraseuth,et al.  Gaussian Processes for Machine Learning , 2008 .

[14]  Eric Walter,et al.  An informational approach to the global optimization of expensive-to-evaluate functions , 2006, J. Glob. Optim..

[15]  Herbert Schuette,et al.  Hardware-in-the-Loop Testing of Vehicle Dynamics Controllers – A Technical Survey , 2005 .

[16]  M. F. Golnaraghi,et al.  Optimal design of passive linear suspension using genetic algorithm , 2004 .

[17]  William F. Milliken,et al.  Race Car Vehicle Dynamics , 1994 .

[18]  A. Barto,et al.  Learning and Sequential Decision Making , 1989 .

[19]  S. Formentin,et al.  Semi-Active Suspension Control Design via Bayesian Optimization , 2020 .

[20]  S. Savaresi,et al.  Experimental Validation of a Hierarchical Suspension Control via MR Damper , 2020, IFAC-PapersOnLine.

[21]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.