Antibiotic-Loaded Cement in Orthopedic Surgery: A Review

Infections in orthopaedic surgery are a serious issue. Antibiotic-loaded bone cement was developed for the treatment of infected joint arthroplasties and for prophylaxes in total joint replacement in selected cases. Despite the widespread use of the antibiotic-loaded bone cement in orthopedics, many issues are still unclear or controversial: bacterial adhesion and antibiotic resistance, modification of mechanical properties which follows the addition of the antibiotic, factors influencing the release of the antibiotic from the cement and the role of the surface, the method for mixing the cement and the antibiotic, the choice and the effectiveness of the antibiotic, the combination of two or more antibiotics, and the toxicity. This review discusses all these topics, focusing on properties, merits, and defects of the antibiotic loaded cement. The final objective is to provide the orthopaedic surgeons clear and concise information for the correct choice of cement in their clinical practice.

[1]  P. Fey,et al.  Adherence of Staphylococcus epidermidis to Biomaterials Is Augmented by PIA , 2006, Clinical orthopaedics and related research.

[2]  K. V. Van Vliet,et al.  Substrata mechanical stiffness can regulate adhesion of viable bacteria. , 2008, Biomacromolecules.

[3]  B. Espehaug,et al.  Antibiotic prophylaxis in total hip arthroplasty , 1997 .

[4]  L. Rimondini,et al.  The microbial infection of biomaterials: A challenge for clinicians and researchers. A short review. , 2005, Journal of applied biomaterials & biomechanics : JABB.

[5]  G. Pier,et al.  Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. , 2005, Research in microbiology.

[6]  J. V. van Horn,et al.  Bacterial survival in the interfacial gap in gentamicin-loaded acrylic bone cements. , 2005, The Journal of bone and joint surgery. British volume.

[7]  E. Lautenschlager,et al.  Antibiotic-impregnated acrylic bone cement. , 1976, The Journal of bone and joint surgery. American volume.

[8]  J. Vilá,et al.  Bases moleculares de la adherencia microbiana sobre los materiales protésicos. Papel de las biocapas en las infecciones asociadas a los materiales protésicos , 2008 .

[9]  R. Elson,et al.  Antibiotic-loaded acrylic cement. , 1977, The Journal of bone and joint surgery. British volume.

[10]  M. Ritter,et al.  The in vitro elution characteristics of vancomycin combined with imipenem-cilastatin in acrylic bone-cements: a pharmacokinetic study. , 2002, The Journal of arthroplasty.

[11]  D. Grainger,et al.  In vitro and in vivo comparisons of staphylococcal biofilm formation on a cross-linked poly(ethylene glycol)-based polymer coating. , 2010, Acta biomaterialia.

[12]  J R van Horn,et al.  Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. , 2004, Biomaterials.

[13]  J. Calhoun,et al.  An articulated antibiotic spacer used for infected total knee arthroplasty: A comparative in vitro elution study of Simplex® and Palacos® bone cements , 2005, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[14]  J. Dumbleton,et al.  Effectiveness of bone cement containing tobramycin , 1999 .

[15]  R. Pantůček,et al.  In vitro testing of gentamicin-vancomycin loaded bone cement to prevent prosthetic joint infection. , 2005, Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia.

[16]  A. Simpson,et al.  Gentamicin May Have an Adverse Effect on Osteogenesis , 2003, Journal of orthopaedic trauma.

[17]  I. Wang,et al.  Adhesion of Staphylococcus epidermidis and transposon mutant strains to hydrophobic polyethylene. , 1998, Journal of biomedical materials research.

[18]  E. Gómez-Barrena,et al.  Effect of surface roughness and sterilization on bacterial adherence to ultra-high molecular weight polyethylene. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[19]  A. Hanssen Prophylactic use of antibiotic bone cement: an emerging standard--in opposition. , 2004, The Journal of arthroplasty.

[20]  S. Kurtz,et al.  Infection burden for hip and knee arthroplasty in the United States. , 2008, The Journal of arthroplasty.

[21]  M. Tunney,et al.  Incorporation of large amounts of gentamicin sulphate into acrylic bone cement: Effect on handling and mechanical properties, antibiotic release, and biofilm formation , 2008, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[22]  S. Leopold,et al.  Comparison of one and two-stage revision of total hip arthroplasty complicated by infection: a Markov expected-utility decision analysis. , 2011, The Journal of bone and joint surgery. American volume.

[23]  R. Bourne Prophylactic use of antibiotic bone cement: an emerging standard--in the affirmative. , 2004, The Journal of arthroplasty.

[24]  H. Hamilton,et al.  Deep infection in total hip arthroplasty. , 2008, Canadian journal of surgery. Journal canadien de chirurgie.

[25]  W. Pitt,et al.  Measurement of bacterial growth rates on polymers. , 1996, Journal of biomedical materials research.

[26]  J. V. van Horn,et al.  Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. , 2001, Biomaterials.

[27]  J. Singh,et al.  Diagnosis and Management of Infected Total Knee Arthroplasty§ , 2011, The open orthopaedics journal.

[28]  A. Hutchinson,et al.  Antibiotic prophylaxis for wound infections in total joint arthroplasty: a systematic review. , 2008, The Journal of bone and joint surgery. British volume.

[29]  P. Higham,et al.  Antibiotic bone cement for the treatment of Pseudomonas aeruginosa in joint arthroplasty: comparison of tobramycin and gentamicin-loaded cements. , 2003, Journal of Biomedical Materials Research. Part B - Applied biomaterials.

[30]  G. Lewis,et al.  Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement. , 2005, Biomaterials.

[31]  B. Masri,et al.  Elution characteristics of vancomycin and tobramycin combined in acrylic bone-cement. , 1996, The Journal of arthroplasty.

[32]  Simmons Td,et al.  Diagnosis and management of the infected total knee arthroplasty. , 1996 .

[33]  J. Dumbleton,et al.  Effectiveness of bone cement containing tobramycin. An in vitro susceptibility study of 99 organisms found in infected joint arthroplasty. , 1999, The Journal of bone and joint surgery. British volume.

[34]  Á. Soriano,et al.  [Molecular basis of microbial adherence to prosthetic materials. Role of biofilms in prosthesis-associated infection]. , 2008, Enfermedades infecciosas y microbiologia clinica.

[35]  S. Gorman,et al.  Antimicrobial Susceptibility of Bacteria Isolated from Orthopedic Implants following Revision Hip Surgery , 1998, Antimicrobial Agents and Chemotherapy.

[36]  H. Rohde,et al.  Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. , 2010, European journal of cell biology.

[37]  Birgitte Espehaug,et al.  Antibiotic prophylaxis in total hip arthroplastyEffects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0-14 years in the Norwegian Arthroplasty Register , 2003, Acta orthopaedica Scandinavica.

[38]  Nadja Karl,et al.  Gentamicin negatively influenced osteogenic function in vitro , 2007, International Orthopaedics.

[39]  S. Gorman,et al.  Formation of Propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials. , 2003, Biomaterials.

[40]  L. Dahners,et al.  Effect of Cefazolin and Vancomycin on Osteoblasts In Vitro , 1996, Clinical orthopaedics and related research.

[41]  T. Schildhauer,et al.  Bacterial Adherence to Tantalum Versus Commonly Used Orthopedic Metallic Implant Materials , 2006, Journal of orthopaedic trauma.

[42]  A. Hanssen,et al.  Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. , 2006, The Journal of bone and joint surgery. American volume.

[43]  L. Montanaro,et al.  Biofilm in Implant Infections: Its Production and Regulation , 2005, The International journal of artificial organs.

[44]  James M. Anderson,et al.  Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. , 2006, Journal of biomedical materials research. Part A.

[45]  J. Lentino Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. , 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[46]  S. Breusch,et al.  In-vitro-Freisetzung von Antibiotika aus SmartSet HV- und Palacos R-Knochenzement und deren Einfluss auf die mechanischen Eigenschaften , 2005, Der Orthopäde.

[47]  J. Powles,et al.  Gentamicin release from old cement during revision hip arthroplasty. , 1998, The Journal of bone and joint surgery. British volume.

[48]  C. Heisel,et al.  [In vitro elution and mechanical properties of antibiotic-loaded SmartSet HV and Palacos R acrylic bone cements]. , 2005, Der Orthopade.

[49]  A. Benini,et al.  Release of Antibiotics from Polymethylmethacrylate Cement , 2002, Journal of chemotherapy.

[50]  Robin Patel,et al.  Biofilms and Antimicrobial Resistance , 2005, Clinical orthopaedics and related research.

[51]  C. Watanakunakorn,et al.  Synergism Between Vancomycin and Gentamicin or Tobramycin for Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus Strains , 1982, Antimicrobial Agents and Chemotherapy.

[52]  J. V. van Horn,et al.  The effect of mixing on gentamicin release from polymethylmethacrylate bone cements , 2003, Acta orthopaedica Scandinavica.

[53]  C. A. Warren,et al.  In vitro elution of tobramycin and vancomycin polymethylmethacrylate beads and spacers from Simplex and Palacos. , 1998, American journal of orthopedics.

[54]  Jens Kelm,et al.  Antibiotic-impregnated PMMA hip spacers: Current status , 2006, Acta orthopaedica.

[55]  W. Dhert,et al.  In vitro release of antibiotics from commercial PMMA beads and articulating hip spacers. , 2008, The Journal of arthroplasty.

[56]  S. Torrado,et al.  Gentamicin bone cements: characterisation and release (in vitro and in vivo assays). , 2001, International journal of pharmaceutics.

[57]  B. Espehaug,et al.  Antibiotic prophylaxis in total hip arthroplasty. Review of 10,905 primary cemented total hip replacements reported to the Norwegian arthroplasty register, 1987 to 1995. , 1997, The Journal of bone and joint surgery. British volume.

[58]  E. Salvati,et al.  Effective bactericidal activity of tobramycin and vancomycin eluted from acrylic bone cement , 2001, Acta orthopaedica Scandinavica.

[59]  A. Benini,et al.  Release of gentamicin and vancomycin from temporary human hip spacers in two-stage revision of infected arthroplasty. , 2004, The Journal of antimicrobial chemotherapy.

[60]  D. Kohn,et al.  Persistence of bacterial growth on antibiotic-loaded beads: Is it actually a problem? , 2008, Acta orthopaedica.

[61]  G. Lewis,et al.  Estimation of the optimum loading of an antibiotic powder in an acrylic bone cement: Gentamicin sulfate in SmartSet HV , 2006, Acta orthopaedica.

[62]  E. Salvati,et al.  Palacos gentamicin for the treatment of deep periprosthetic hip infections. , 1994, Clinical orthopaedics and related research.

[63]  J. V. van Horn,et al.  Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. , 2001, The Journal of antimicrobial chemotherapy.

[64]  J. V. van Horn,et al.  Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release. , 2000, Biomaterials.

[65]  H. Busscher,et al.  Infection of orthopedic implants and the use of antibiotic-loaded bone cements: A review , 2001, Acta orthopaedica Scandinavica.