A MULTISCALE FINITE ELEMENT METHOD

We propose a multiscale nite element method to treat singularly perturbed reaction diusion equations. We enrich the usual piecewise linear or bilinear nite el- ement trial spaces with local solutions of the original problem, as in the Residual Free Bubble (RFB) setting, but do not require these functions to vanish on each element edge. Such multiscale functions have an analytic expression as long as the data are assumed to be linear. We enrich the space of test functions with bubbles allowing for static condensa- tion, thus our method is of Petrov-Galerkin type. We perform error analysis in dier ent asymptotic regimes and present numerical validations.

[1]  Frédéric Valentin,et al.  Towards multiscale functions : enriching finite element spaces with local but not bubble-like functions , 2005 .

[2]  L. Franca,et al.  On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .

[3]  Franco Brezzi,et al.  Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.) , 1993 .

[4]  Frédéric Valentin,et al.  Convergence Analysis of a Multiscale Finite Element Method for Singularly Perturbed Problems , 2005, Multiscale Model. Simul..

[5]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[6]  Martin Stynes,et al.  A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem☆ , 1997 .

[7]  Giancarlo Sangalli,et al.  Global and Local Error Analysis for the Residual-Free Bubbles Method Applied to Advection-Dominated Problems , 2000, SIAM J. Numer. Anal..

[8]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[9]  Frédéric Valentin,et al.  Combining Stabilized Finite Element Methods , 1995 .

[10]  Thomas J. R. Hughes,et al.  Stabilized finite element methods for steady advection-diffusion with production , 1994 .

[11]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[12]  L. Franca,et al.  The Galerkin gradient least-squares method , 1989 .