Hierarchical multiresolution reconstruction of shell surfaces

We present an adaptive, hierarchical Hh-multiresolution reconstruction algorithm to model shell surface objects from a matched pair of triangulated surfaces. Shell surfaces are an interval of contours of trivariate functions with prismatic support. In the H-direction, a hierarchical representation of the scaffold is constructed. For any adaptively extracted scaffold from the hierarchy, a sequence of functions in the h-direction (regularly subdivided mesh) is constructed so that their contours approximate the input shell to within a given error e. The shell surfaces can be made to capture sharp curve creases on the shell while being C1 smooth everywhere else. Using an interval of iso-contours of smooth trivariate spline functions, rather than a pair of inner and outer surface splines, one avoids the need for interference checks between the inner and outer surface boundaries.

[1]  M. L. Bucalem,et al.  Finite element analysis of shell structures , 1997 .

[2]  Wing Kam Liu,et al.  A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis , 1998 .

[3]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[4]  Michel Bernadou,et al.  The Finite Element Method in Thin Shell Theory: Application to Arch Dam Simulations , 1982 .

[5]  Fujio Yamaguchi,et al.  Computer-Aided Geometric Design , 2002, Springer Japan.

[6]  Leila De Floriani,et al.  Data Structures for Simplicial Multi-complexes , 1999, SSD.

[7]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[8]  Mark de Berg,et al.  On levels of detail in terrains , 1995, SCG '95.

[9]  Hartmut Noltemeier,et al.  Geometric Modelling , 1998, Computing Supplement.

[10]  Bernd Hamann,et al.  Constructing Hierarchies for Triangle Meshes , 1998, IEEE Trans. Vis. Comput. Graph..

[11]  Mark de Berg,et al.  On levels of detail in terrains , 1995, SCG '95.

[12]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[13]  G. Nielson The side-vertex method for interpolation in triangles☆ , 1979 .

[14]  Carl Erikson,et al.  Polygonal Simplification: An Overview , 1996 .

[15]  Chandrajit Bajaj Smooth Multiresolution Reconstruction of Free-Form Fat Surfaces , 1999 .

[16]  Bernd Hamann,et al.  Curvature Approximation for Triangulated Surfaces , 1993, Geometric Modelling.

[17]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[18]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[19]  Arturs Kalnins,et al.  Introduction to the Theory of Thin Shells , 1983 .

[20]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[21]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[22]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[23]  Bernd Hamann,et al.  A data reduction scheme for triangulated surfaces , 1994, Comput. Aided Geom. Des..

[24]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[25]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..