Combining data in phylogenetic analysis.

Systematists have access to multiple sources of character information in phylogenetic analysis. For example, it is not unusual to have nucleotide sequences from several different genes, or to have molecular and morphological data. How should diverse data be analyzed in phylogenetic analysis? Several methods have been proposed for the treatment of partitioned data: the total evidence, separate analysis, and conditional combination approaches. Here, we review some of the advantages and disadvantages of the different approaches, with special concentration on which methods help us to discern the evolutionary process and provide the most accurate estimates of phylogeny.

[1]  D. Piñero,et al.  PHYLOGENETIC ESTIMATION OF PLASMID EXCHANGE IN BACTERIA , 1992, Evolution; international journal of organic evolution.

[2]  D. Dykhuizen,et al.  Recombination in Escherichia coli and the definition of biological species , 1991, Journal of bacteriology.

[3]  Z. Yang,et al.  Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. , 1993, Molecular biology and evolution.

[4]  C. Bult,et al.  TESTING SIGNIFICANCE OF INCONGRUENCE , 1994 .

[5]  S. Hedges,et al.  Molecular evidence for the origin of birds. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Wilson,et al.  Sequence convergence and functional adaptation of stomach lysozymes from foregut fermenters. , 1987, Cold Spring Harbor symposia on quantitative biology.

[7]  A. Graybeal Evaluating the Phylogenetic Utility of Genes: A Search for Genes Informative About Deep Divergences among Vertebrates , 1994 .

[8]  D. Hillis,et al.  Evidence for biased gene conversion in concerted evolution of ribosomal DNA. , 1991, Science.

[9]  J. Bull,et al.  Partitioning and combining data in phylogenetic analysis , 1993 .

[10]  A. Kluge,et al.  When theories and methodologies clash: a phylogenetic reanalysis of the North American ambystomatid salamanders (Caudata: Ambystomatidae) , 1993 .

[11]  S. Hedges,et al.  Pancreatic polypeptide and the sister group of birds. , 1991, Molecular biology and evolution.

[12]  D. Swofford When are phylogeny estimates from molecular and morphological data incongruent , 1991 .

[13]  A. Danchin,et al.  Evidence for horizontal gene transfer in Escherichia coli speciation. , 1991, Journal of molecular biology.

[14]  J. Huelsenbeck,et al.  SUCCESS OF PHYLOGENETIC METHODS IN THE FOUR-TAXON CASE , 1993 .

[15]  J. Farris,et al.  The implications of congruence in Menidia , 1981 .

[16]  M. Steel,et al.  Recovering evolutionary trees under a more realistic model of sequence evolution. , 1994, Molecular biology and evolution.

[17]  A. Kluge,et al.  Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. , 1993, Molecular biology and evolution.

[18]  M. Miyamoto,et al.  A Congruence Test of Reliability Using Linked Mitochondrial DNA Sequences , 1994 .

[19]  M. Miyamoto,et al.  Phylogenetic Analysis of DNA Sequences , 1991 .

[20]  A. Kluge A Concern for Evidence and a Phylogenetic Hypothesis of Relationships among Epicrates (Boidae, Serpentes) , 1989 .

[21]  John J. Wiens,et al.  Weighting, Partitioning, and Combining Characters in Phylogenetic Analysis , 1994 .

[22]  D. Hillis,et al.  Molecular Versus Morphological Approaches to Systematics , 1987 .

[23]  C. Luo,et al.  Structure and expression of dog apolipoprotein A-I, E, and C-I mRNAs: implications for the evolution and functional constraints of apolipoprotein structure. , 1989, Journal of lipid research.

[24]  M. Pagel,et al.  The comparative method in evolutionary biology , 1991 .

[25]  S. Hedges,et al.  Tetrapod phylogeny inferred from 18S and 28S ribosomal RNA sequences and a review of the evidence for amniote relationships. , 1990, Molecular biology and evolution.

[26]  Michael D. Hendy,et al.  A Framework for the Quantitative Study of Evolutionary Trees , 1989 .

[27]  S. Lanyon Phylogenetic frameworks: towards a firmer foundation for the comparative approach , 1993 .

[28]  Wen-Hsiung Li,et al.  Mutation rates differ among regions of the mammalian genome , 1989, Nature.

[29]  D Penny,et al.  Estimating the reliability of evolutionary trees. , 1986, Molecular biology and evolution.

[30]  Christopher G. Dowson,et al.  Localized sex in bacteria , 1991, Nature.

[31]  A. Queiroz For Consensus (Sometimes) , 1993 .

[32]  Michael M. Miyamoto,et al.  TESTING SPECIES PHYLOGENIES AND PHYLOGENETIC METHODS WITH CONGRUENCE , 1995 .

[33]  John P. Huelsenbeck,et al.  A Likelihood Ratio Test to Detect Conflicting Phylogenetic Signal , 1996 .

[34]  Allen G. Rodrigo,et al.  A randomisation test of the null hypothesis that two cladograms are sample estimates of a parametric phylogenetic tree , 1993 .

[35]  M. Miyamoto,et al.  A CONGRUENCE TEST OF RELIABILITY USING LINKED , 1994 .

[36]  S. Løvtrup On the Classification of the Taxon Tetrapoda , 1985 .

[37]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[38]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[39]  J. Doyle,et al.  Gene Trees and Species Trees: Molecular Systematics as One-Character Taxonomy , 1992 .

[40]  H. Munro,et al.  Mammalian protein metabolism , 1964 .

[41]  D. Penny,et al.  Estimating the Reliability of Evolutionary Tree & * , 1998 .

[42]  Arnold G. Kluge,et al.  AMNIOTE PHYLOGENY AND THE IMPORTANCE OF FOSSILS , 1988, Cladistics : the international journal of the Willi Hennig Society.

[43]  A. Kluge,et al.  CLADISTICS: WHAT'S IN A WORD? , 1993, Cladistics : the international journal of the Willi Hennig Society.

[44]  R. Lenski,et al.  Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex? , 1992, Proceedings of the National Academy of Sciences of the United States of America.