Quantification of Temporal Decorrelation Effects at L-Band for Polarimetric SAR Interferometry Applications

Temporal decorrelation is the most critical issue for the successful inversion of polarimetric SAR interferometry (Pol-InSAR) data acquired in an interferometric repeat-pass mode, typical for satellite or lower frequency airborne SAR systems. This paper provides a quantitative estimation of temporal decorrelation effects at L-band for a wide range of temporal baselines based on a unique set of multibaseline Pol-InSAR data. A new methodology that allows to quantify individual temporal decorrelation components has been developed and applied. Temporal decorrelation coefficients are estimated for temporal baselines ranging from 10 min to 54 days and converted to height inversion errors caused by them. The temporal decorrelations of γTV (volume temporal decorrelation) and γTG (ground temporal decorrelation) depend not only on the wind-induced movement but also strongly on the rain-induced dielectric changes in volume and on the ground at temporal baseline on the order of day or longer. At temporal baselines on the order of minutes, the wind speed is a critical parameter and the speed of 2 m/s already hampers the application of Pol-InSAR forest parameter inversion. The approach is supported and validated by using L-band E-SAR repeat-pass data acquired in the frame of three dedicated campaigns, BioSAR 2007, TempoSAR 2008, and TempoSAR 2009.

[1]  S. R. Cloude,et al.  The effect of temporal decorrelation on the inversion of forest parameters from Pol-InSAR data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[2]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[3]  Irena Hajnsek,et al.  MULTIBASELINE POLARIMETRIC SAR INTERFEROMETRY FOREST HEIGHT INVERSION APPROACHES , 2011 .

[4]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[5]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  S. Cloude,et al.  Three-stage inversion process for polarimetric SAR interferometry , 2003 .

[7]  R. Horn The DLR airborne SAR project E-SAR , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[8]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[9]  Marco Lavalle,et al.  A Temporal Decorrelation Model for Polarimetric Radar Interferometers , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Laurent Ferro-Famil,et al.  Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[12]  Irena Hajnsek,et al.  Removal of additive noise in polarimetric eigenvalue processing , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[13]  Irena Hajnsek,et al.  Tropical-Forest-Parameter Estimation by Means of Pol-InSAR: The INDREX-II Campaign , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Fabio Rocca,et al.  Modeling Interferogram Stacks , 2007, IEEE Transactions on Geoscience and Remote Sensing.