Advances in Engineering the Fly Genome with the CRISPR-Cas System

Drosophila has long been a premier model for the development and application of cutting-edge genetic approaches. The CRISPR-Cas system now adds the ability to manipulate the genome with ease and precision, providing a rich toolbox to interrogate relationships between genotype and phenotype, to delineate and visualize how the genome is organized, to illuminate and manipulate RNA, and to pioneer new gene drive technologies. Myriad transformative approaches have already originated from the CRISPR-Cas system, which will likely continue to spark the creation of tools with diverse applications. Here, we provide an overview of how CRISPR-Cas gene editing has revolutionized genetic analysis in Drosophila and highlight key areas for future advances.

[1]  C. F. CURTIS,et al.  Possible Use of Translocations to fix Desirable Genes in Insect Pest Populations , 1968, Nature.

[2]  K. Makino,et al.  Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product , 1987, Journal of bacteriology.

[3]  N. Nassif,et al.  Targeted gene replacement in Drosophila via P element-induced gap repair , 1991, Science.

[4]  J. B. Boyd,et al.  Oligonucleotide-directed site-specific mutagenesis in Drosophila melanogaster. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Y. Rong,et al.  Gene targeting by homologous recombination in Drosophila. , 2000, Science.

[6]  Dana Carroll,et al.  Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. , 2002, Genetics.

[7]  K. Golic,et al.  Ends-out, or replacement, gene targeting in Drosophila , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Austin Burt,et al.  Site-specific selfish genes as tools for the control and genetic engineering of natural populations , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  A. James Gene drive systems in mosquitoes: rules of the road. , 2005, Trends in parasitology.

[10]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[11]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[12]  A. Burt,et al.  The Population Genetics of Using Homing Endonuclease Genes in Vector and Pest Management , 2008, Genetics.

[13]  J. Gall,et al.  Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases , 2008, Proceedings of the National Academy of Sciences.

[14]  Y. Jan,et al.  Efficient Ends-Out Gene Targeting In Drosophila , 2008, Genetics.

[15]  D. Carroll,et al.  Genetic Analysis of Zinc-Finger Nuclease-Induced Gene Targeting in Drosophila , 2009, Genetics.

[16]  Stan J. J. Brouns,et al.  CRISPR-based adaptive and heritable immunity in prokaryotes. , 2009, Trends in biochemical sciences.

[17]  Wei Dong,et al.  Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering , 2009, Proceedings of the National Academy of Sciences.

[18]  Stan J. J. Brouns,et al.  Evolution and classification of the CRISPR–Cas systems , 2011, Nature Reviews Microbiology.

[19]  Nikhila S Tanneti,et al.  Multiple Barriers to Nonhomologous DNA End Joining During Meiosis in Drosophila , 2012, Genetics.

[20]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[21]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[22]  A. James,et al.  Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development , 2012, Proceedings of the National Academy of Sciences.

[23]  R. Jiao,et al.  Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. , 2012, Journal of genetics and genomics = Yi chuan xue bao.

[24]  S. Boulton,et al.  Playing the end game: DNA double-strand break repair pathway choice. , 2012, Molecular cell.

[25]  J. Haber,et al.  Break-induced DNA replication. , 2013, Cold Spring Harbor perspectives in biology.

[26]  Wei Zhang,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2014, Cell.

[27]  F. Baudat,et al.  Meiotic recombination in mammals: localization and regulation , 2013, Nature Reviews Genetics.

[28]  D. Carroll,et al.  Donor DNA Utilization During Gene Targeting with Zinc-Finger Nucleases , 2013, G3: Genes, Genomes, Genetics.

[29]  Anthony T. Do,et al.  Double-Strand Break Repair Assays Determine Pathway Choice and Structure of Gene Conversion Events in Drosophila melanogaster , 2013, G3: Genes, Genomes, Genetics.

[30]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[31]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[32]  Prashant Mali,et al.  Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing , 2013, Nature Methods.

[33]  A. Burt,et al.  Modelling the spatial spread of a homing endonuclease gene in a mosquito population , 2013, The Journal of applied ecology.

[34]  Jianzhong Xi,et al.  Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9 , 2013, Proceedings of the National Academy of Sciences.

[35]  Dong-Yeon Cho,et al.  DNA copy number evolution in Drosophila cell lines , 2014, Genome Biology.

[36]  Chris P. Ponting,et al.  Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System , 2013, Cell reports.

[37]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[38]  Melissa M. Harrison,et al.  Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease , 2013, Genetics.

[39]  Nicholas E. Propson,et al.  Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis , 2013, Proceedings of the National Academy of Sciences.

[40]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[41]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[42]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[43]  Julian Lange,et al.  Self-organization of meiotic recombination initiation: general principles and molecular pathways. , 2014, Annual review of genetics.

[44]  Wei Zhang,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2014, Cell.

[45]  Simon L. Bullock,et al.  Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila , 2014, Proceedings of the National Academy of Sciences.

[46]  U. Gaul,et al.  Efficient chromosomal gene modification with CRISPR/cas9 and PCR-based homologous recombination donors in cultured Drosophila cells , 2014, Nucleic acids research.

[47]  N. Perrimon,et al.  Cas9-based genome editing in Drosophila. , 2014, Methods in enzymology.

[48]  Y. Rong,et al.  Efficient Gene Knock-out and Knock-in with Transgenic Cas9 in Drosophila , 2014, G3: Genes, Genomes, Genetics.

[49]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[50]  C. Rubinstein,et al.  Highly Specific and Efficient CRISPR/Cas9-Catalyzed Homology-Directed Repair in Drosophila , 2014, Genetics.

[51]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[52]  Shiyou Zhu,et al.  High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells , 2014, Nature.

[53]  Yunde Zhao,et al.  Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. , 2014, Journal of integrative plant biology.

[54]  Benjamin L. Oakes,et al.  Programmable RNA recognition and cleavage by CRISPR/Cas9 , 2014, Nature.

[55]  Austin Burt,et al.  Heritable strategies for controlling insect vectors of disease , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[56]  Jin-Soo Kim,et al.  Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases , 2014, Genome research.

[57]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[58]  Lu-ping Liu,et al.  Performance of the Cas9 Nickase System in Drosophila melanogaster , 2014, G3: Genes, Genomes, Genetics.

[59]  Yilong Li,et al.  Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library , 2013, Nature Biotechnology.

[60]  J. Ward,et al.  Rapid and Precise Engineering of the Caenorhabditis elegans Genome with Lethal Mutation Co-Conversion and Inactivation of NHEJ Repair , 2014, Genetics.

[61]  Andrew R. Bassett,et al.  CRISPR/Cas9 mediated genome engineering in Drosophila. , 2014, Methods.

[62]  Ronald D. Vale,et al.  A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging , 2014, Cell.

[63]  Melissa M. Harrison,et al.  A CRISPR view of development , 2014, Genes & development.

[64]  Gene W. Yeo,et al.  Applications of Cas 9 as an RNA-programmed RNA-binding protein , 2015 .

[65]  Luke A. Gilbert,et al.  Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds , 2015, Cell.

[66]  Eugene V Koonin,et al.  Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. , 2015, Molecular cell.

[67]  Alexander Deiters,et al.  Optical Control of CRISPR/Cas9 Gene Editing. , 2015, Journal of the American Chemical Society.

[68]  James E. DiCarlo,et al.  RNA-guided gene drives can efficiently bias inheritance in wild yeast , 2015, bioRxiv.

[69]  Gene W. Yeo,et al.  Applications of Cas9 as an RNA-programmed RNA-binding protein. , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[70]  George M. Church,et al.  Safeguarding gene drive experiments in the laboratory , 2015, Science.

[71]  Yuta Nihongaki,et al.  Photoactivatable CRISPR-Cas9 for optogenetic genome editing , 2015, Nature Biotechnology.

[72]  Ethan Bier,et al.  Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi , 2015, Proceedings of the National Academy of Sciences.

[73]  Shaojie Zhang,et al.  Multicolor CRISPR labeling of chromosomal loci in human cells , 2015, Proceedings of the National Academy of Sciences.

[74]  Mathieu Blanchette,et al.  PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing , 2015, Nature communications.

[75]  Andrew R. Bassett,et al.  A Genome-Wide CRISPR Library for High-Throughput Genetic Screening in Drosophila Cells , 2015, Journal of genetics and genomics = Yi chuan xue bao.

[76]  N. Perrimon,et al.  In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila , 2015, Genetics.

[77]  John G Doench,et al.  Genetic screens and functional genomics using CRISPR/Cas9 technology , 2015, The FEBS journal.

[78]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[79]  Melissa M. Harrison,et al.  Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9. , 2015, Methods in molecular biology.

[80]  Neville E. Sanjana,et al.  High-throughput functional genomics using CRISPR–Cas9 , 2015, Nature Reviews Genetics.

[81]  David A. Scott,et al.  In vivo genome editing using Staphylococcus aureus Cas9 , 2015, Nature.

[82]  J. Haber TOPping Off Meiosis. , 2015, Molecular cell.

[83]  J. Rinn,et al.  Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display , 2015, Nature Methods.

[84]  Melissa M. Harrison,et al.  CRISPR‐Cas9 Genome Editing in Drosophila , 2015, Current protocols in molecular biology.

[85]  Ethan Bier,et al.  The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations , 2015, Science.

[86]  Yishi Jin,et al.  Optogenetic mutagenesis in Caenorhabditis elegans , 2015, Nature Communications.

[87]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[88]  Feng Zhang,et al.  A split-Cas9 architecture for inducible genome editing and transcription modulation , 2015, Nature Biotechnology.

[89]  C. Gersbach,et al.  A light-inducible CRISPR/Cas9 system for control of endogenous gene activation , 2015, Nature chemical biology.

[90]  N. Perrimon,et al.  Highly-efficient Cas9-mediated transcriptional programming , 2015, Nature Methods.

[91]  Kabin Xie,et al.  Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system , 2015, Proceedings of the National Academy of Sciences.

[92]  Charles E. Vejnar,et al.  CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo , 2015, Nature Methods.

[93]  F. Diao,et al.  Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes. , 2015, Cell reports.

[94]  B. Meyer,et al.  Dramatic Enhancement of Genome Editing by CRISPR/Cas9 Through Improved Guide RNA Design , 2015, Genetics.

[95]  N. Perrimon,et al.  Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi , 2015, Science Signaling.

[96]  J. Haber TOPping off meiosis , 2015, Molecular cell.

[97]  Andrea Crisanti,et al.  A CRISPR-Cas 9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae , 2015 .

[98]  Shaojie Zhang,et al.  CRISPR-Cas9 nuclear dynamics and target recognition in living cells , 2016, The Journal of cell biology.

[99]  A. Cheng,et al.  Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling , 2016, Cell Research.

[100]  Shaojie Zhang,et al.  Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow , 2016, Nature Biotechnology.

[101]  C. Potter,et al.  Non-Mendelian Dominant Maternal Effects Caused by CRISPR/Cas9 Transgenic Components in Drosophila melanogaster , 2016, G3: Genes, Genomes, Genetics.

[102]  Design and Generation of Drosophila Single Guide RNA Expression Constructs. , 2016, Cold Spring Harbor protocols.

[103]  Ji-Long Liu,et al.  Effective knockdown of Drosophila long non-coding RNAs by CRISPR interference , 2016, Nucleic acids research.

[104]  Esteban O. Mazzoni,et al.  CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci , 2016, Nature Communications.

[105]  Philipp W. Messer,et al.  Evolution of Resistance Against CRISPR/Cas9 Gene Drive , 2016, Genetics.

[106]  N. Perrimon,et al.  Detection of Indel Mutations in Drosophila by High-Resolution Melt Analysis (HRMA). , 2016, Cold Spring Harbor protocols.

[107]  Antonia A. Dominguez,et al.  Transcriptional regulation of hepatic lipogenesis , 2015, Nature Reviews Molecular Cell Biology.

[108]  S. Bullock,et al.  Creating Heritable Mutations in Drosophila with CRISPR-Cas9. , 2016, Methods in molecular biology.

[109]  Martin J. Aryee,et al.  Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells , 2016, Nature Biotechnology.

[110]  David R. Liu,et al.  Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage , 2016, Nature.

[111]  Eric S. Lander,et al.  C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector , 2016, Science.

[112]  E. Bier,et al.  The dawn of active genetics , 2016, BioEssays : news and reviews in molecular, cellular and developmental biology.

[113]  Simon L. Bullock,et al.  Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs , 2016, Nature Methods.

[114]  N. Perrimon,et al.  Design and Generation of Donor Constructs for Genome Engineering in Drosophila. , 2016, Cold Spring Harbor protocols.

[115]  Luke A. Gilbert,et al.  Versatile protein tagging in cells with split fluorescent protein , 2016, Nature Communications.

[116]  A. Clark,et al.  Evolution of Resistance Against CRISPR/Cas9 Gene Drive , 2016, Genetics.

[117]  N. Perrimon,et al.  Cas9-Mediated Genome Engineering in Drosophila melanogaster. , 2016, Cold Spring Harbor protocols.

[118]  K. Förstemann,et al.  A Comprehensive Toolbox for Genome Editing in Cultured Drosophila melanogaster Cells , 2016, G3: Genes, Genomes, Genetics.

[119]  P. Zamore,et al.  Rapid Screening for CRISPR-Directed Editing of the Drosophila Genome Using white Coconversion , 2016, G3: Genes, Genomes, Genetics.

[120]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[121]  N. Perrimon,et al.  Comparing CRISPR and RNAi-based screening technologies , 2016, Nature Biotechnology.

[122]  James A. Gagnon,et al.  Whole-organism lineage tracing by combinatorial and cumulative genome editing , 2016, Science.

[123]  Wendell A. Lim,et al.  Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci , 2016, Nucleic acids research.

[124]  C. Potter,et al.  Editing Transgenic DNA Components by Inducible Gene Replacement in Drosophila melanogaster , 2016, Genetics.

[125]  J. Kent,et al.  Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR , 2016, Genome Biology.

[126]  Jennifer A. Doudna,et al.  Programmable RNA Tracking in Live Cells with CRISPR/Cas9 , 2016, Cell.

[127]  Feng Zhang,et al.  An RNA-aptamer-based two-color CRISPR labeling system , 2016, Scientific Reports.

[128]  Andrea Crisanti,et al.  A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito vector Anopheles gambiae , 2015, Nature Biotechnology.

[129]  Philippa C. Griffin,et al.  Tropical Drosophila pandora carry Wolbachia infections causing cytoplasmic incompatibility or male killing , 2016, Evolution; international journal of organic evolution.

[130]  P. Wittkopp,et al.  Tools and strategies for scarless allele replacement in Drosophila using CRISPR/Cas9 , 2017, Fly.

[131]  M. Wade,et al.  CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations , 2016, Science Advances.

[132]  J. Sekelsky DNA Repair in Drosophila: Mutagens, Models, and Missing Genes , 2017, Genetics.