Bioremedial potential of microbial mechanisms of metal mobilization and immobilization.

[1]  Helmut Brandl,et al.  Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi , 2001 .

[2]  D. Lovley,et al.  Reduction of Fe(III), Mn(IV), and Toxic Metals at 100°C by Pyrobaculum islandicum , 2000, Applied and Environmental Microbiology.

[3]  E. Roden,et al.  Bacterial Reductive Dissolution of Crystalline Fe(III) Oxide in Continuous-Flow Column Reactors , 2000, Applied and Environmental Microbiology.

[4]  Patrik Samuelson,et al.  Staphylococcal Surface Display of Metal-Binding Polyhistidyl Peptides , 2000, Applied and Environmental Microbiology.

[5]  L. Macaskie,et al.  Growth of naturally occurring microbial isolates in metal–citrate medium and bioremediation of metal–citrate wastes , 2000 .

[6]  B. Tebo,et al.  Dissimilatory Metal Reduction by the Facultative Anaerobe Pantoea agglomerans SP1 , 2000, Applied and Environmental Microbiology.

[7]  G. Gadd,et al.  Copper accumulation by sulfate-reducing bacterial biofilms. , 2000, FEMS microbiology letters.

[8]  C. Hewitt,et al.  The Effect of the Growth Medium on the Composition and Metal Binding Behaviour of the Extracellular Polymeric Material of a Metal-Accumulating Citrobacter sp. , 2000 .

[9]  W. Frankenberger,et al.  Formation of Dimethylselenonium Compounds in Soil , 2000 .

[10]  M. Schembri,et al.  Sequestration of Zinc Oxide by Fimbrial Designer Chelators , 2000, Applied and Environmental Microbiology.

[11]  P. Corbisier,et al.  Heavy Metals Bioremediation of Soil , 1999, Molecular biotechnology.

[12]  H. Eccles,et al.  Treatment of metal-contaminated wastes: why select a biological process? , 1999, Trends in biotechnology.

[13]  E. Roden,et al.  Sorption of Strontium by Bacteria, Fe(III) Oxide, and Bacteria-Fe(III) Oxide Composites , 1999 .

[14]  D. S. Smith,et al.  Characterizing Heterogeneous Bacterial Surface Functional Groups Using Discrete Affinity Spectra for Proton Binding , 1999 .

[15]  D. Couillard,et al.  Decontamination of Fly Ash and Used Lime from Municipal Waste Incinerator Using Thiobacillus ferrooxidans , 1999, Environmental management.

[16]  Z. Aksu,et al.  Simultaneous biosorption of phenol and nickel(II) from binary mixtures onto dried aerobic activated sludge , 1999 .

[17]  W. Babel,et al.  Sorption of Aluminum by Sulfate-Reducing Bacteria Isolated from Uranium Mine Tailings , 1999 .

[18]  R. Oremland,et al.  Simultaneous Reduction of Nitrate and Selenate by Cell Suspensions of Selenium-Respiring Bacteria , 1999, Applied and Environmental Microbiology.

[19]  E. Rabinovitz,et al.  Fixation of spent Saccharomyces cerevisiae biomass for lead sorption , 1999, Applied Microbiology and Biotechnology.

[20]  R. Oremland,et al.  Bacterial respiration of arsenic and selenium. , 1999, FEMS microbiology reviews.

[21]  M. Blazquez,et al.  Biosorption of copper and zinc by Cymodocea nodosa. , 1999, FEMS microbiology reviews.

[22]  Jo‐Shu Chang,et al.  Detoxification of mercury by immobilized mercuric reductase , 1999 .

[23]  A. Ariff,et al.  The mechanism of cadmium removal from aqueous solution by nonmetabolizing free and immobilized live biomass of Rhizopus oligosporus , 1999 .

[24]  C. Dagot,et al.  Role des Polymeres Extracellulaires Dans L'Adsorption du Cadmium Par Les Boues Activées Role of Extracellular Polymers in Cadmium Adsorption by Activated Sludges , 1999 .

[25]  T. Viraraghavan,et al.  Removal of heavy metals using the fungus Aspergillus niger , 1999 .

[26]  Johnnie N. Moore,et al.  Effect of Soil Moisture on Dimethylselenide Transport and Transformation to Nonvolatile Selenium , 1999 .

[27]  G. Sriram,et al.  Nickel biosorption from aqueous systems: Studies on single and multimetal equilibria, kinetics, and recovery , 1999 .

[28]  G. Gadd,et al.  Extracellular metal-binding activity of the sulphate-reducing bacterium Desulfococcus multivorans. , 1999, Microbiology.

[29]  M. Pantsar-Kallio,et al.  Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. , 1999, The Science of the total environment.

[30]  W. Drury Treatment of Acid Mine Drainage with Anaerobic Solid‐Substrate Reactors , 1999 .

[31]  M. Y. Arica,et al.  Biosorption of inorganic mercury and alkylmercury species on to Phanerochaete chrysosporium mycelium , 1999 .

[32]  N. Terry,et al.  Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants , 1999, Planta.

[33]  J. Berthelin,et al.  Bacterial and Chemical Reductive Dissolution of Mn-, Co-, Cr-, and Al-Substituted Goethites , 1999 .

[34]  B. Volesky,et al.  Characteristics of gold biosorption from cyanide solution , 1999 .

[35]  K. Bosecker,et al.  Leaching Heavy Metals from Contaminated Soil by Using Thiobacillus ferrooxidans or Thiobacillus thiooxidans , 1999 .

[36]  W. Jury,et al.  Adsorption and Degradation of Dimethyl Selenide in Soil , 1999 .

[37]  G. Gadd,et al.  Lead mineral transformation by fungi , 1999, Current Biology.

[38]  T. Björkman,et al.  Solubilization of Phosphates and Micronutrients by the Plant-Growth-Promoting and Biocontrol Fungus Trichoderma harzianum Rifai 1295-22 , 1999, Applied and Environmental Microbiology.

[39]  W. Frankenberger,et al.  Effects of soil moisture, depth, and organic amendments on selenium volatilization , 1999 .

[40]  C. D. Boswell,et al.  The effect of heavy metals and other environmental conditions on the anaerobic phosphate metabolism of Acinetobacter johnsonii. , 1999, Microbiology.

[41]  J. Schroeder,et al.  Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast , 1999, The EMBO journal.

[42]  M. Abdel-Latif,et al.  Bioaccumulation of some hazardous metals by sol–gel entrapped microorganisms , 1999 .

[43]  J. Lloyd,et al.  Reduction of Technetium by Desulfovibrio desulfuricans: Biocatalyst Characterization and Use in a Flowthrough Bioreactor , 1999, Applied and Environmental Microbiology.

[44]  S. Macnaughton,et al.  Developments in terrestrial bacterial remediation of metals. , 1999, Current opinion in biotechnology.

[45]  Bo Jin,et al.  Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater , 1999 .

[46]  L. Macaskie,et al.  Accumulation of zirconium and nickel by Citrobacter sp , 1999 .

[47]  S. Lora,et al.  Poly(hydroxiethyl methacrylate) resins as supports for copper (II) biosorption with Arthrobacter sp.: matrix nanomorphology and sorption performances , 1999 .

[48]  J. Zhou,et al.  Zn biosorption by Rhizopus arrhizus and other fungi , 1999, Applied Microbiology and Biotechnology.

[49]  D. Nies,et al.  Microbial heavy-metal resistance , 1999, Applied Microbiology and Biotechnology.

[50]  T. Matsunaga,et al.  Screening of marine microalgae for bioremediation of cadmium-polluted seawater. , 1999, Journal of biotechnology.

[51]  J. Lloyd,et al.  Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples , 1999 .

[52]  M. Callow,et al.  Phosphate release and heavy metal accumulation by biofilm-immobilized and chemically-coupled cells of a Citrobacter sp. pre-grown in continuous culture. , 1999, Biotechnology and bioengineering.

[53]  A Mulchandani,et al.  Engineering of improved microbes and enzymes for bioremediation. , 1999, Current opinion in biotechnology.

[54]  A. Pauss,et al.  Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass , 1999 .

[55]  L. Bernier,et al.  Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants , 1999 .

[56]  V. de Lorenzo,et al.  Enhanced Bioaccumulation of Heavy Metal Ions by Bacterial Cells Due to Surface Display of Short Metal Binding Peptides , 1999, Applied and Environmental Microbiology.

[57]  G. Gadd,et al.  Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction, and volatilization , 1999 .

[58]  R. Prakasham,et al.  Biosorption of chromium VI by free and immobilized Rhizopus arrhizus , 1999 .

[59]  W. Jury,et al.  Evaluation of simultaneous reduction and transport of selenium in saturated soil columns , 1999 .

[60]  L. Bernier,et al.  Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV‐induced mutants , 1999 .

[61]  A. Zouboulis,et al.  Biosorption of cadmium ions by Actinomycetes and separation by flotation , 1999 .

[62]  B. Jeong,et al.  Production of two phosphatases by a Citrobacter sp. grown in batch and continuous culture , 1999 .

[63]  P. Le Cloirec,et al.  Selective Biosorption of Lanthanide (La, Eu, Yb) Ions by Pseudomonas aeruginosa , 1999 .

[64]  Lynne E. Macaskie,et al.  Enzymatic Recovery of Elemental Palladium by Using Sulfate-Reducing Bacteria , 1998, Applied and Environmental Microbiology.

[65]  S. N. Gray,et al.  Fungi as potential bioremediation agents in soil contaminated with heavy or radioactive metals. , 1998, Biochemical Society transactions.

[66]  R. Oremland,et al.  Microbial oxidation of elemental selenium in soil slurries and bacterial cultures , 1998 .

[67]  M. Pazirandeh,et al.  Development of Bacterium-Based Heavy Metal Biosorbents: Enhanced Uptake of Cadmium and Mercury by Escherichia coli Expressing a Metal Binding Motif , 1998, Applied and Environmental Microbiology.

[68]  V. Lorenzo,et al.  Bioaccumulation of heavy metals with protein fusions of metallothionein to bacteriol OMPs , 1998 .

[69]  A. Francis Biotransformation of uranium and other actinides in radioactive wastes , 1998 .

[70]  G. Gadd,et al.  An integrated microbial process for the bioremediation of soil contaminated with toxic metals , 1998, Nature Biotechnology.

[71]  G. Gadd,et al.  Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. , 1998, Microbiology.

[72]  Anna Obraztsova,et al.  Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors , 1998 .

[73]  J. Keasling,et al.  Engineering polyphosphate metabolism in Escherichia coli: implications for bioremediation of inorganic contaminants. , 1998, Biotechnology and bioengineering.

[74]  M. Bruschi,et al.  The Desulfuromonas acetoxidans Triheme Cytochrome c7 Produced in Desulfovibrio desulfuricans Retains Its Metal Reductase Activity , 1998, Applied and Environmental Microbiology.

[75]  N. Yee,et al.  A comparison of the thermodynamics of metal adsorption onto two common bacteria , 1998 .

[76]  C. Daughney,et al.  Sorption of 2,4,6-Trichlorophenol by Bacillus subtilis , 1998 .

[77]  Webb,et al.  Metal removal by sulphate‐reducing bacteria from natural and constructed wetlands , 1998, Journal of applied microbiology.

[78]  D. Lovley,et al.  Bioremediation of metal contamination. , 1997, Current opinion in biotechnology.

[79]  J. Santini,et al.  Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction , 2000, Archives of Microbiology.

[80]  L. Macaskie,et al.  Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high-activity strains and effect of process parameters. , 1999, Biotechnology and bioengineering.

[81]  M. Otte,et al.  WETLANDS FOR REHABILITATION OF METAL MINE WASTES , 1999 .

[82]  Jo‐Shu Chang,et al.  BIOSORPTION OF LEAD, COPPER, AND CADMIUM WITH CONTINUOUS HOLLOW-FIBER MICROFILTRATION PROCESSES , 1999 .

[83]  N. Sağlam,et al.  Removal of cadmium by Pleurotus sajor‐caju basidiomycetes , 1999 .

[84]  F. Beolchini,et al.  Arthrobacter sp. as a copper biosorbing material : Ionic characterisation of the biomass and its use entrapped in a poly-hema matrix , 1999 .

[85]  V. N. Kosyakov,et al.  DIFFERENT METAL SORPTION CAPACITIES OF CELL WALL POLYSACCHARIDES OF ASPERGILLUS NIGER , 1999 .

[86]  G. Gadd Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. , 1999, Advances in microbial physiology.

[87]  M. Shuler,et al.  Hg2+ Removal by Genetically Engineered Escherichia coli in a Hollow Fiber Bioreactor , 1998, Biotechnology progress.

[88]  B. Woodward,et al.  WOLFIPORIA COCOS : A POTENTIAL AGENT FOR COMPOSTING OR BIOPROCESSING DOUGLAS-FIR WOOD TREATED WITH COPPER-BASED PRESERVATIVES , 1998 .

[89]  L. Evison,et al.  The kinetics of metal uptake by microbial biomass : Implications for the design of a biosorption reactor , 1998 .

[90]  P. Morgenstern,et al.  Bioleaching of heavy metals from contaminated aquatic sediments using indigenous sulfur-oxidizing bacteria: A feasibility study , 1998 .