A 453-$\mu{\hbox{W}}$ 53–70-GHz Ultra-Low-Power Double-Balanced Source-Driven Mixer Using 90-nm CMOS Technology

<?Pub Dtl?>An ultra-low-power consumption and ultra-low local oscillator (LO) power double-balanced down-conversion mixer using standard 90-nm CMOS technology is presented in this paper. By employing a weak inversion biasing technique in a source-driven topology, the proposed <formula formulatype="inline"> <tex Notation="TeX">$V$</tex></formula>-band mixer can operate at microwatt power consumption of 453 <formula formulatype="inline"><tex Notation="TeX">$\mu{\hbox{W}}$</tex> </formula> and has an ultra low LO power of <formula formulatype="inline"> <tex Notation="TeX">${-}{\hbox{6 dBm}}$</tex></formula>. In addition, under 1.2-V standard supply voltage, the down-conversion mixer exhibits excellent conversion-gain flatness of <formula formulatype="inline"><tex Notation="TeX">${\hbox {5.9}}{\pm}{{\hbox {1.5}}}~{\hbox {dB}}$</tex></formula> and the measured LO-to-RF isolation is more than 37 dB from 53 to 70 GHz, and <formula formulatype="inline"> <tex Notation="TeX">${\rm OP}_{\rm 1 dB}$</tex></formula> of <formula formulatype="inline"> <tex Notation="TeX">${-}{\hbox{9.2 dBm}}$</tex></formula> at RF frequency of 60 GHz. Based on aforementioned results, the presented monolithic microwave integrated circuit can mitigate power-hungry issues while providing reasonable RF performance, which is important for a low-power communication system.

[1]  Jeng-Han Tsai,et al.  A 51 to 65 GHz Low-Power Bulk-Driven Mixer Using 0.13 $\mu$m CMOS Technology , 2009, IEEE Microwave and Wireless Components Letters.

[2]  Calvin Plett,et al.  RF circuit implications of moderate inversion enhanced linear region in MOSFETs , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Jae Jin Lee,et al.  A 60 GHz Current-Reuse LO-Boosting Mixer in 90 nm CMOS , 2012, IEEE Microwave and Wireless Components Letters.

[4]  Jeng-Han Tsai,et al.  Design of 40–108-GHz Low-Power and High-Speed CMOS Up-/Down-Conversion Ring Mixers for Multistandard MMW Radio Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[5]  William Shieh,et al.  60 GHz double-balanced up-conversion mixer on 130 nm CMOS technology , 2008 .

[6]  Phillip E Allen,et al.  CMOS Analog Circuit Design , 1987 .

[7]  Pin-Cheng Huang,et al.  60 GHz Double-Balanced Gate-Pumped Down-Conversion Mixers With a Combined Hybrid on 130 nm CMOS Processes , 2010, IEEE Microwave and Wireless Components Letters.

[8]  E. Skafidas,et al.  A 60-GHz Double-Balanced Gilbert Cell Down-Conversion Mixer on 130-nm CMOS , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[9]  Jeng-Han Tsai,et al.  Design and Analysis of a 0.8–77.5-GHz Ultra-Broadband Distributed Drain Mixer Using 0.13- $\mu$ m CMOS Technology , 2009 .

[10]  Daniela Dragomirescu,et al.  A wideband single-balanced down-mixer for the 60 GHz band in 65 nm CMOS , 2010, 2010 Asia-Pacific Microwave Conference.

[11]  Reza Mahmoudi,et al.  A 60-GHz double-balanced homodyne down-converter in 65-nm CMOS process , 2009, 2009 European Microwave Integrated Circuits Conference (EuMIC).

[12]  Yi-Jen Chan,et al.  A 0.5–7.5 GHz Ultra Low-Voltage Low-Power Mixer Using Bulk-Injection Method by 0.18- $\mu$m CMOS Technology , 2007, IEEE Microwave and Wireless Components Letters.

[13]  Jeng-Han Tsai,et al.  A 25–75 GHz Broadband Gilbert-Cell Mixer Using 90-nm CMOS Technology , 2007, IEEE Microwave and Wireless Components Letters.

[14]  Chinchun Meng,et al.  60-GHz Dual-Conversion Down-/Up-Converters Using Schottky Diode in 0.18 $\mu{\hbox {m}}$ Foundry CMOS Technology , 2012, IEEE Transactions on Microwave Theory and Techniques.

[15]  Dong Yun Jung,et al.  C gs compensating V-band resistive mixer with low conversion loss at low LO power , 2010 .

[16]  Mingquan Bao,et al.  A 9–31-GHz Subharmonic Passive Mixer in 90-nm CMOS Technology , 2006 .

[17]  Sung-Jin Kim,et al.  A 60 GHz Wideband Quadrature-Balanced Mixer Based on 0.13 $\mu{\rm m}$ RFCMOS Technology , 2011, IEEE Microwave and Wireless Components Letters.

[18]  M. Fujishima,et al.  60-GHz CMOS Down-Conversion Mixer with Slow-Wave Matching Transmission Lines , 2006, 2006 IEEE Asian Solid-State Circuits Conference.

[19]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[20]  Nikos Makris,et al.  Analog performance of advanced CMOS in weak, moderate, and strong inversion , 2010, Proceedings of the 17th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2010.

[21]  S.E. Gunnarsson,et al.  Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology , 2006, IEEE Microwave and Wireless Components Letters.

[22]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[23]  S. Mohammadi,et al.  A 3GHz subthreshold CMOS low noise amplifier , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[24]  Huei Wang,et al.  Design and Analysis of Down-Conversion Gate/Base-Pumped Harmonic Mixers Using Novel Reduced-Size 180$^\circ$ Hybrid With Different Input Frequencies , 2012, IEEE Transactions on Microwave Theory and Techniques.

[25]  J. Laskar,et al.  A Low-Power Fully Monolithic Subthreshold CMOS Receiver With Integrated LO Generation for 2.4 GHz Wireless PAN Applications , 2008, IEEE Journal of Solid-State Circuits.