暂无分享,去创建一个
Marthe Bonamy | Nicolas Bousquet | Carl Feghali | Matthew Johnson | N. Bousquet | Matthew Johnson | Marthe Bonamy | Carl Feghali
[1] Daniël Paulusma,et al. Kempe equivalence of colourings of cubic graphs , 2015, Eur. J. Comb..
[2] Paul S. Bonsma,et al. Finding Paths between graph colourings: PSPACE-completeness and superpolynomial distances , 2007, Theor. Comput. Sci..
[3] Wang,et al. Antiferromagnetic Potts models. , 1989, Physical review letters.
[4] Ruth Haas,et al. Counting edge-Kempe-equivalence classes for 3-edge-colored cubic graphs , 2012, Discret. Math..
[5] Daniël Paulusma,et al. Finding Shortest Paths Between Graph Colourings , 2014, Algorithmica.
[6] Nicolas Bousquet,et al. Fast Recoloring of Sparse Graphs , 2014, Eur. J. Comb..
[7] R. B. Potts. Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.
[8] Marc E. Bertschi,et al. Perfectly contractile graphs , 1990, J. Comb. Theory, Ser. B.
[9] Henry Meyniel,et al. Les 5-colorations d'un graphe planaire forment une classe de commutation unique , 1978, J. Comb. Theory B.
[10] A. Kempe. On the Geographical Problem of the Four Colours , 1879 .
[11] Jan van den Heuvel,et al. Connectedness of the graph of vertex-colourings , 2008, Discret. Math..
[12] R. L. Brooks. On colouring the nodes of a network , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] B. Mohar,et al. On the non-ergodicity of the Swendsen–Wang–Kotecký algorithm on the kagomé lattice , 2010, 1002.4279.
[14] Alan D. Sokal. A Personal List of Unsolved Problems Concerning Lattice Gases and Antiferromagnetic Potts Models , 2000 .
[15] Daniël Paulusma,et al. A Reconfigurations Analogue of Brooks' Theorem and Its Consequences , 2016, J. Graph Theory.
[16] L. Cereceda. Mixing graph colourings , 2007 .
[17] F. Y. Wu. Potts model of magnetism (invited) , 1984 .
[18] Jan van den Heuvel,et al. Mixing 3-colourings in bipartite graphs , 2007, Eur. J. Comb..
[19] Jan van den Heuvel,et al. Finding paths between 3‐colorings , 2011, IWOCA.
[20] V. G. Vizing,et al. New proof of brooks' theorem , 1969 .
[21] F. Y. Wu. The Potts model , 1982 .
[22] S. Fisk. Geometric coloring theory , 1977 .
[23] Marthe Bonamy,et al. Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs , 2014, J. Comb. Optim..
[24] Bojan Mohar,et al. A new Kempe invariant and the (non)-ergodicity of the Wang–Swendsen–Kotecký algorithm , 2009, 0901.1010.
[25] Jan van den Heuvel,et al. The complexity of change , 2013, Surveys in Combinatorics.
[26] Michel Las Vergnas,et al. Kempe classes and the Hadwiger Conjecture , 1981, J. Comb. Theory B.
[27] Marthe Bonamy,et al. Recoloring graphs via tree decompositions , 2014, Eur. J. Comb..
[28] Eric Vigoda,et al. Improved bounds for sampling colorings , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[29] Bojan Mohar,et al. Kempe Equivalence of Edge‐Colorings in Subcubic and Subquartic Graphs , 2010, J. Graph Theory.
[30] Marthe Bonamy,et al. Recoloring bounded treewidth graphs , 2013, Electron. Notes Discret. Math..
[31] Paul S. Bonsma,et al. The Complexity of Bounded Length Graph Recoloring and CSP Reconfiguration , 2014, IPEC.
[32] Wang,et al. Three-state antiferromagnetic Potts models: A Monte Carlo study. , 1990, Physical review. B, Condensed matter.
[33] Rolf Wanka,et al. On the Connectedness of Clash-free Timetables , 2015, ArXiv.
[34] B. Mohar. Kempe Equivalence of Colorings , 2006 .