On a conjecture of Mohar concerning Kempe equivalence of regular graphs

Let $G$ be a graph with a vertex colouring $\alpha$. Let $a$ and $b$ be two colours. Then a connected component of the subgraph induced by those vertices coloured either $a$ or $b$ is known as a Kempe chain. A colouring of $G$ obtained from $\alpha$ by swapping the colours on the vertices of a Kempe chain is said to have been obtained by a Kempe change. Two colourings of $G$ are Kempe equivalent if one can be obtained from the other by a sequence of Kempe changes. A conjecture of Mohar (2007) asserts that, for $k \geq 3$, all $k$-colourings of a $k$-regular graph that is not complete are Kempe equivalent. It was later shown that all $3$-colourings of a cubic graph that is neither $K_4$ nor the triangular prism are Kempe equivalent. In this paper, we prove that the conjecture holds for each $k\geq 4$. We also report the implications of this result on the validity of the Wang-Swendsen-Koteck\'{y} algorithm for the antiferromagnetic Potts model at zero-temperature.

[1]  Daniël Paulusma,et al.  Kempe equivalence of colourings of cubic graphs , 2015, Eur. J. Comb..

[2]  Paul S. Bonsma,et al.  Finding Paths between graph colourings: PSPACE-completeness and superpolynomial distances , 2007, Theor. Comput. Sci..

[3]  Wang,et al.  Antiferromagnetic Potts models. , 1989, Physical review letters.

[4]  Ruth Haas,et al.  Counting edge-Kempe-equivalence classes for 3-edge-colored cubic graphs , 2012, Discret. Math..

[5]  Daniël Paulusma,et al.  Finding Shortest Paths Between Graph Colourings , 2014, Algorithmica.

[6]  Nicolas Bousquet,et al.  Fast Recoloring of Sparse Graphs , 2014, Eur. J. Comb..

[7]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  Marc E. Bertschi,et al.  Perfectly contractile graphs , 1990, J. Comb. Theory, Ser. B.

[9]  Henry Meyniel,et al.  Les 5-colorations d'un graphe planaire forment une classe de commutation unique , 1978, J. Comb. Theory B.

[10]  A. Kempe On the Geographical Problem of the Four Colours , 1879 .

[11]  Jan van den Heuvel,et al.  Connectedness of the graph of vertex-colourings , 2008, Discret. Math..

[12]  R. L. Brooks On colouring the nodes of a network , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  B. Mohar,et al.  On the non-ergodicity of the Swendsen–Wang–Kotecký algorithm on the kagomé lattice , 2010, 1002.4279.

[14]  Alan D. Sokal A Personal List of Unsolved Problems Concerning Lattice Gases and Antiferromagnetic Potts Models , 2000 .

[15]  Daniël Paulusma,et al.  A Reconfigurations Analogue of Brooks' Theorem and Its Consequences , 2016, J. Graph Theory.

[16]  L. Cereceda Mixing graph colourings , 2007 .

[17]  F. Y. Wu Potts model of magnetism (invited) , 1984 .

[18]  Jan van den Heuvel,et al.  Mixing 3-colourings in bipartite graphs , 2007, Eur. J. Comb..

[19]  Jan van den Heuvel,et al.  Finding paths between 3‐colorings , 2011, IWOCA.

[20]  V. G. Vizing,et al.  New proof of brooks' theorem , 1969 .

[21]  F. Y. Wu The Potts model , 1982 .

[22]  S. Fisk Geometric coloring theory , 1977 .

[23]  Marthe Bonamy,et al.  Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs , 2014, J. Comb. Optim..

[24]  Bojan Mohar,et al.  A new Kempe invariant and the (non)-ergodicity of the Wang–Swendsen–Kotecký algorithm , 2009, 0901.1010.

[25]  Jan van den Heuvel,et al.  The complexity of change , 2013, Surveys in Combinatorics.

[26]  Michel Las Vergnas,et al.  Kempe classes and the Hadwiger Conjecture , 1981, J. Comb. Theory B.

[27]  Marthe Bonamy,et al.  Recoloring graphs via tree decompositions , 2014, Eur. J. Comb..

[28]  Eric Vigoda,et al.  Improved bounds for sampling colorings , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[29]  Bojan Mohar,et al.  Kempe Equivalence of Edge‐Colorings in Subcubic and Subquartic Graphs , 2010, J. Graph Theory.

[30]  Marthe Bonamy,et al.  Recoloring bounded treewidth graphs , 2013, Electron. Notes Discret. Math..

[31]  Paul S. Bonsma,et al.  The Complexity of Bounded Length Graph Recoloring and CSP Reconfiguration , 2014, IPEC.

[32]  Wang,et al.  Three-state antiferromagnetic Potts models: A Monte Carlo study. , 1990, Physical review. B, Condensed matter.

[33]  Rolf Wanka,et al.  On the Connectedness of Clash-free Timetables , 2015, ArXiv.

[34]  B. Mohar Kempe Equivalence of Colorings , 2006 .