Non-Binary Diameter Perfect Constant-Weight Codes

Diameter perfect codes form a natural generalization for perfect codes. They are based on the code-anticode bound which generalizes the sphere-packing bound. The code-anticode bound was proved by Delsarte for distance-regular graphs and it holds for some other metrics too. In this paper we prove the bound for non-binary constant-weight codes with the Hamming metric and characterize the diameter perfect codes and the maximum size anticodes for these codes. We distinguish between six families of non-binary diameter constant-weight codes and four families of maximum size non-binary constant-weight anticodes. Each one of these families of diameter perfect codes raises some different questions. We consider some of these questions and leave lot of ground for further research. Finally, as a consequence, some $t$ -intersecting families related to the well-known Erdös-Ko-Rado theorem, are constructed.

[1]  Lie Zhu,et al.  Constructions for generalized Steiner systems GS(3, 4, v, 2) , 2007, Des. Codes Cryptogr..

[2]  Denis S. Krotov On diameter perfect constant-weight ternary codes , 2008, Discret. Math..

[3]  Hui Zhang,et al.  Optimal Quaternary Constant-Weight Codes With Weight Four and Distance Five , 2013, IEEE Transactions on Information Theory.

[4]  Alberto Ravagnani,et al.  Optimal Ferrers Diagram Rank-Metric Codes , 2014, IEEE Transactions on Information Theory.

[5]  Gennian Ge,et al.  Generalized steiner triple systems with group size five , 1999 .

[6]  R. Ahlswede,et al.  The diametric theorem in Hamming spaces-optimal anticodes , 1997, Proceedings of IEEE International Symposium on Information Theory.

[7]  Pingzhi Fan,et al.  Constructions of optimal quaternary constant weight codes via group divisible designs , 2009, Discret. Math..

[8]  Rudolf Ahlswede,et al.  The Complete Intersection Theorem for Systems of Finite Sets , 1997, Eur. J. Comb..

[9]  Nadine Eberhardt,et al.  Constructions And Combinatorial Problems In Design Of Experiments , 2016 .

[10]  Tuvi Etzion,et al.  Optimal constant weight codes over Zk and generalized designs , 1997, Discret. Math..

[11]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[12]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[13]  Deryk Osthus,et al.  The existence of designs via iterative absorption , 2016 .

[14]  Rudolf Ahlswede,et al.  On Perfect Codes and Related Concepts , 2001, Des. Codes Cryptogr..

[15]  Tuvi Etzion,et al.  Product Constructions for Perfect Lee Codes , 2011, IEEE Transactions on Information Theory.

[16]  Patric R. J. Östergård,et al.  Ternary Constant Weight Codes , 2002, Electron. J. Comb..

[17]  Yeow Meng Chee,et al.  The Sizes of Optimal $q$ -Ary Codes of Weight Three and Distance Four: A Complete Solution , 2008, IEEE Transactions on Information Theory.

[18]  Tuvi Etzion On the Nonexistence of Perfect Codes in the Johnson Scheme , 1996, SIAM J. Discret. Math..

[19]  Moshe Schwartz,et al.  Correcting Limited-Magnitude Errors in the Rank-Modulation Scheme , 2009, IEEE Transactions on Information Theory.

[20]  N. J. A. Sloane,et al.  A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.

[21]  Ludo M. G. M. Tolhuizen,et al.  On Perfect Ternary Constant Weight Codes , 1999, Des. Codes Cryptogr..

[22]  Moshe Schwartz,et al.  Perfect constant-weight codes , 2004, IEEE Transactions on Information Theory.

[23]  N. J. A. Sloane,et al.  Lower bounds for constant weight codes , 1980, IEEE Trans. Inf. Theory.

[24]  D. Fon-Der-Flaass A bound on correlation immunity. , 2007 .

[25]  Mattias Svanström A Class of Perfect Ternary Constant-Weight Codes , 1999, Des. Codes Cryptogr..

[26]  Yeow Meng Chee,et al.  Constructions for $q$-Ary Constant-Weight Codes , 2007, IEEE Transactions on Information Theory.

[27]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[28]  Peter Keevash The existence of designs , 2014, 1401.3665.

[29]  Sarit Buzaglo,et al.  Bounds on the Size of Permutation Codes With the Kendall $\tau $ -Metric , 2014, IEEE Transactions on Information Theory.

[30]  Kevin T. Phelps,et al.  Generalized Steiner systems with block size three and group sizeg ? 3(mod 6) , 1997 .

[31]  Patric R. J. Östergård,et al.  Non-existence of a ternary constant weight (16, 5, 15;2048) diameter perfect code , 2016, Adv. Math. Commun..