Thermal and environmental stability of semi-transparent perovskite solar cells for tandems by a solution-processed nanoparticle buffer layer and sputtered ITO electrode

Thermal and environmental stability of metal halide perovskite solar cells remains a major barrier to their commercialization. The industry standard transparent electrode, ITO, has good optoelectronic properties and high stability. We introduce a robust buffer layer by solution-processing AZO nanoparticles, enabling a sputtered amorphous ITO layer without damaging the underlying device. We make both semitransparent cells (12.3%) and mechanically stacked tandems (12.3% + 5.7% = 18.0%) using monocrystalline-silicon solar cells as the bottom cell. We operate the inverted-architecture, semitransparent perovskite solar cell without additional sealing in ambient atmosphere under one-sun equivalent visible illumination and measure a Ts0 lifetime of 124 hours at 100°C.

[1]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[2]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[3]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[4]  N. Park,et al.  High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system , 2015 .

[5]  Christophe Ballif,et al.  Sputtered rear electrode with broadband transparency for perovskite solar cells , 2015 .

[6]  Igor Bello,et al.  Ion-beam-induced surface damages on tris-(8-hydroxyquinoline) aluminum , 1999 .

[7]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[8]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[9]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[10]  A. Ismail,et al.  Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity , 2006 .

[11]  David Worsley,et al.  A Transparent Conductive Adhesive Laminate Electrode for High‐Efficiency Organic‐Inorganic Lead Halide Perovskite Solar Cells , 2014, Advanced materials.

[12]  B. Rech,et al.  Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[13]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[14]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[15]  Christophe Ballif,et al.  Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. , 2015, The journal of physical chemistry letters.

[16]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[17]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[18]  C. Ballif,et al.  Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[19]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[20]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[21]  Michael D. McGehee,et al.  High-efficiency tandem perovskite solar cells , 2015 .

[22]  O. Gunawan,et al.  Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage , 2014 .

[23]  Study of growth parameters on structural properties of TiO2 nanowires , 2013, Journal of Nanostructure in Chemistry.

[24]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[25]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[26]  Alberto Salleo,et al.  Semi‐Transparent Polymer Solar Cells with Excellent Sub‐Bandgap Transmission for Third Generation Photovoltaics , 2013, Advanced materials.

[27]  Karen Forberich,et al.  High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. , 2015, Nanoscale.

[28]  B. M. Henry,et al.  Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates , 2001 .

[29]  Mohammad Khaja Nazeeruddin,et al.  Outdoor Performance and Stability under Elevated Temperatures and Long‐Term Light Soaking of Triple‐Layer Mesoporous Perovskite Photovoltaics , 2015 .

[30]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[31]  Supratik Guha,et al.  Monolithic Perovskite‐CIGS Tandem Solar Cells via In Situ Band Gap Engineering , 2015 .

[32]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[33]  Yang Yang,et al.  Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells. , 2015, ACS nano.

[34]  Shujuan Huang,et al.  Four-Terminal Tandem Solar Cells Using CH3NH3PbBr3 by Spectrum Splitting. , 2015, The journal of physical chemistry letters.

[35]  Thomas Feurer,et al.  High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[36]  Yongli Gao,et al.  Interfacial electronic structure at the CH3NH3PbI3/MoOx interface , 2015 .

[37]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[38]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[39]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[40]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.