Quantification and minimization of uncertainties of internal target volume for stereotactic body radiation therapy of lung cancer.

PURPOSE To quantify uncertainties in delineating an internal target volume (ITV) and to understand how these uncertainties may be individually minimized for stereotactic body radiation therapy (SBRT) of early stage non-small cell lung cancer (NSCLC). METHODS AND MATERIALS Twenty patients with NSCLC who were undergoing SBRT were imaged with free-breathing 3-dimensional computed tomography (3DCT) and 10-phase 4-dimensional CT (4DCT) for delineating gross tumor volume (GTV)(3D) and ITV(10Phase) (ITV3). The maximum intensity projection (MIP) CT was also calculated from 10-phase 4DCT for contouring ITV(MIP) (ITV1). Then, ITV(COMB) (ITV2), ITV(10Phase+GTV3D) (ITV4), and ITV(10Phase+ITVCOMB) (ITV5) were generated by combining ITV(MIP) and GTV(3D), ITV(10phase) and GTV(3D), and ITV(10phase) and ITV(COMB), respectively. All 6 volumes (GTV(3D) and ITV1 to ITV5) were delineated in the same lung window by the same radiation oncologist. The percentage of volume difference (PVD) between any 2 different volumes was determined and was correlated to effective tumor diameter (ETD), tumor motion ranges, R(3D), and the amplitude variability of the recorded breathing signal (v) to assess their volume variations. RESULTS The mean (range) tumor motion (R(SI), R(AP), R(ML), and R(3D)) and breathing variability (v) were 7.6 mm (2-18 mm), 4.0 mm (2-8 mm), 3.3 mm (0-7.5 mm), 9.9 mm (4.1-18.7 mm), and 0.17 (0.07-0.37), respectively. The trend of volume variation was GTV(3D) <ITV1 <ITV2 ≈ ITV3 < ITV4 < ITV5. The means ± SDs of these volumes were 11.1 ± 9.3 cc, 13.2 ± 10.5 cc, 14.9 ± 11.0 cc, 14.7 ± 11.4 cc, 15.9 ± 11.7 cc, and 16.4 ± 11.8 cc, respectively. All comparisons between the target volumes showed statistical significance (P≤.001), except for ITV2 and ITV3 (P=.594). The PVDs for all volume pairs correlated negatively with ETD (r≤-0.658, P≤.006) and positively with R(3D) (r≥0.503, P≤.047). The PVDs for pairs of ITV2 vs ITV5 and ITV5 vs ITV4 negatively correlated with ETD (r=0.502, -0.626; P=.047, .010). No other correlation was found. CONCLUSION Uncertainties in individualized ITVs for SBRT of early stage NSCLC could effectively be minimized by combining information from 3DCT, 4DCT, and MIP. If these images cannot be efficiently contoured, a combination of ITV(MIP) and GTV(3D) could be an effective alternative.

[1]  Kotaro Kameyama,et al.  Evaluation of the new TNM staging system proposed by the International Association for the Study of Lung Cancer at a single institution. , 2009, The Journal of thoracic and cardiovascular surgery.

[2]  Joe Y. Chang,et al.  Improving radiation conformality in the treatment of non-small cell lung cancer. , 2010, Seminars in radiation oncology.

[3]  Ke Sheng,et al.  Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging. , 2007, International journal of radiation oncology, biology, physics.

[4]  Lech Papiez,et al.  Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. , 2009, International journal of radiation oncology, biology, physics.

[5]  W. Lu,et al.  Comparison of helical, maximum intensity projection (MIP), and averaged intensity (AI) 4D CT imaging for stereotactic body radiation therapy (SBRT) planning in lung cancer. , 2006, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[6]  Toshio Ohashi,et al.  Stereotactic body radiotherapy for primary lung cancer at a dose of 50 Gy total in five fractions to the periphery of the planning target volume calculated using a superposition algorithm. , 2009, International journal of radiation oncology, biology, physics.

[7]  Jan Nyman,et al.  Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[8]  I. Chetty,et al.  Image-Guided Radiation Therapy for Lung Cancer , 2013 .

[9]  Eike Rietzel,et al.  Design of 4D treatment planning target volumes. , 2006, International journal of radiation oncology, biology, physics.

[10]  Suresh Senan,et al.  Evaluating mobility for radiotherapy planning of lung tumors: a comparison of virtual fluoroscopy and 4DCT. , 2006, Lung cancer.

[11]  R. Muirhead,et al.  Use of Maximum Intensity Projections (MIPs) for Target Outlining in 4DCT Radiotherapy Planning , 2008, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[12]  F. Sirzén,et al.  A Systematic Overview of Radiation Therapy Effects in Non-Small Cell Lung Cancer , 2003, Acta oncologica.

[13]  George Starkschall,et al.  Image-guided radiation therapy for non-small cell lung cancer. , 2008, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[14]  George Starkschall,et al.  Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography , 2009, Radiation oncology.

[15]  P. Giraud,et al.  Initial evaluation of a four‐dimensional computed tomography system, using a programmable motor , 2006, Journal of applied clinical medical physics.

[16]  George T. Y. Chen,et al.  Four-dimensional image-based treatment planning: Target volume segmentation and dose calculation in the presence of respiratory motion. , 2005, International journal of radiation oncology, biology, physics.

[17]  George Starkschall,et al.  Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. , 2007, International journal of radiation oncology, biology, physics.

[18]  Suresh Senan,et al.  Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. , 2005, International journal of radiation oncology, biology, physics.

[19]  Hiroki Shirato,et al.  STEREOTACTIC RADIATION THERAPY WORKSHOP Hypofractionated Stereotactic Radiotherapy (HypoFXSRT) for Stage I Non-small Cell Lung Cancer: Updated Results of 257 Patients in a Japanese Multi-institutional Study , 2007 .