Information retrieval: a view from the Chinese IR community

During a two-day strategic workshop in February 2018, 22 information retrieval researchers met to discuss the future challenges and opportunities within the field. The outcome is a list of potential research directions, project ideas, and challenges. This report describes the major conclusions we have obtained during the workshop. A key result is that we need to open our mind to embrace a broader IR field by rethink the definition of information, retrieval, user, system, and evaluation of IR. By providing detailed discussions on these topics, this report is expected to inspire our IR researchers in both academia and industry, and help the future growth of the IR research community.

[1]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition , 2012 .

[2]  Özgür B. Akan,et al.  InterPlaNetary Internet: state-of-the-art and research challenges , 2003, Comput. Networks.

[3]  Bhaskar Mitra,et al.  Neural Text Embeddings for Information Retrieval , 2017, WSDM.

[4]  W. Bruce Croft,et al.  A Deep Relevance Matching Model for Ad-hoc Retrieval , 2016, CIKM.

[5]  Surajit Chaudhuri,et al.  An overview of data warehousing and OLAP technology , 1997, SGMD.

[6]  David Ellis,et al.  Theory and explanation in information retrieval research , 1984 .

[7]  Diane Kelly,et al.  Methods for Evaluating Interactive Information Retrieval Systems with Users , 2009, Found. Trends Inf. Retr..

[8]  W. Bruce Croft,et al.  The History of Information Retrieval Research , 2012, Proceedings of the IEEE.

[9]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[10]  Jeffrey Pennington,et al.  Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection , 2011, NIPS.

[11]  Meredith Ringel Morris,et al.  What do people ask their social networks, and why?: a survey study of status message q&a behavior , 2010, CHI.

[12]  Larry P. Heck,et al.  Learning deep structured semantic models for web search using clickthrough data , 2013, CIKM.

[13]  JUSTIN ZOBEL,et al.  Inverted files for text search engines , 2006, CSUR.

[14]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[15]  Pertti Vakkari,et al.  Explanation in Information Seeking and Retrieval , 2005 .

[16]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[17]  Vannevar Bush,et al.  As we may think , 1945, INTR.

[18]  W. Bruce Croft,et al.  A Deep Look into Neural Ranking Models for Information Retrieval , 2019, Inf. Process. Manag..

[19]  C. L. Philip Chen,et al.  Data-intensive applications, challenges, techniques and technologies: A survey on Big Data , 2014, Inf. Sci..

[20]  Peng Zhang,et al.  IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models , 2017, SIGIR.

[21]  Melanie Swan,et al.  Blockchain: Blueprint for a New Economy , 2015 .

[22]  Hao Yang,et al.  MedSearch: a specialized search engine for medical information retrieval , 2008, CIKM '08.

[23]  Bhaskar Mitra,et al.  SIGIR 2017 Workshop on Neural Information Retrieval (Neu-IR'17) , 2017, SIGIR.

[24]  W. Bruce Croft,et al.  Relevance Feedback and Personalization: A Language Modeling Perspective , 2001, DELOS.

[25]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[26]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[27]  Martin Ester,et al.  A matrix factorization technique with trust propagation for recommendation in social networks , 2010, RecSys '10.

[28]  José Luis Vicedo González,et al.  TREC: Experiment and evaluation in information retrieval , 2007, J. Assoc. Inf. Sci. Technol..

[29]  Bart Thomee,et al.  Interactive search in image retrieval: a survey , 2012, International Journal of Multimedia Information Retrieval.

[30]  Hugo Zaragoza,et al.  The Probabilistic Relevance Framework: BM25 and Beyond , 2009, Found. Trends Inf. Retr..

[31]  Avishek Anand,et al.  EXS: Explainable Search Using Local Model Agnostic Interpretability , 2018, WSDM.

[32]  Bhaskar Mitra,et al.  Neu-IR: The SIGIR 2016 Workshop on Neural Information Retrieval , 2016, SIGIR.

[33]  Stefan Seebacher,et al.  Blockchain Technology as an Enabler of Service Systems: A Structured Literature Review , 2017, IESS.

[34]  Pia Borlund,et al.  The IIR evaluation model: a framework for evaluation of interactive information retrieval systems , 2003, Inf. Res..

[35]  Till Plumbaum,et al.  Users and noise: the magic barrier of recommender systems , 2012, UMAP.

[36]  Marimuthu Palaniswami,et al.  Internet of Things (IoT): A vision, architectural elements, and future directions , 2012, Future Gener. Comput. Syst..

[37]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[38]  ZaragozaHugo,et al.  The Probabilistic Relevance Framework , 2009 .

[39]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[40]  Chris Callison-Burch,et al.  Fast, Cheap, and Creative: Evaluating Translation Quality Using Amazon’s Mechanical Turk , 2009, EMNLP.

[41]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[42]  ChengXiang Zhai,et al.  Positional language models for information retrieval , 2009, SIGIR.

[43]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[44]  Eric Brill,et al.  Improving web search ranking by incorporating user behavior information , 2006, SIGIR.

[45]  Thorsten Joachims,et al.  Eye-tracking analysis of user behavior in WWW search , 2004, SIGIR '04.

[46]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.