Etude des equations de percus et yevick, d'hyperchaine et de born et green dans le cas des fluides classiques
暂无分享,去创建一个
[1] W. G. Hoover,et al. Fifth and Sixth Virial Coefficients for Hard Spheres and Hard Disks , 1964 .
[2] E. Thiele. Comparison of the Classical Theories of Unimolecular Reactions. II. A Model Calculation , 1963 .
[3] M. Wertheim,et al. EXACT SOLUTION OF THE PERCUS-YEVICK INTEGRAL EQUATION FOR HARD SPHERES , 1963 .
[4] A. A. Broyles,et al. Comparison of Radial Distribution Functions from Integral Equations and Monte Carlo , 1962 .
[5] L. Verlet,et al. On the theory of classical fluids-III , 1962 .
[6] M. S. Green. On the Theory of the Critical Point of a Simple Fluid , 1960 .
[7] G. S. Rushbrooke. On the hyper-chain approximation in the theory of classical fluids , 1960 .
[8] F. R. Parker,et al. Monte Carlo Equation of State of Molecules Interacting with the Lennard‐Jones Potential. I. A Supercritical Isotherm at about Twice the Critical Temperature , 1957 .
[9] B. Alder,et al. Radial Distribution Functions and the Equation of State of a Fluid Composed of Rigid Spherical Molecules , 1950 .
[10] J. M. J. van Leeuwen,et al. New method for the calculation of the pair correlation function. I , 1959 .
[11] Max Born,et al. A general kinetic theory of liquids , 1949 .