Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model

Nonlinear hysteresis modeling is studied using a novel PZT-actuated flexure-based mechanism. To compare the performance of variant hysteresis models with respect to the tracking reference, we reformulate the Bouc-Wen model, the Dahl model and the Duhem model as a generalized Duhem model. System parameters for these three hysteresis models are formulated into nonlinear optimization problems with constraints. These optimization problems are solved by the particle swarm optimization method. Since the Duhem model includes both electrical and mechanical domains, it has a smaller modeling error compared to the other two hysteresis models. The simulation results are confirmed by modeling the proposed biaxial piezo-actuated positioning stage of these hysteresis models. Cross-coupling effects between the X- and Y-axis actuation are also alleviated by a novel feedforward compensation mechanism based on the Duhem model with crossover terms. Finally, a real-time experiment is performed to confirm the feasibility of the proposed method. The experimental results validate the capability of the proposed controller to achieve precision tracking tasks with submicron precision.

[1]  Toshiro Higuchi,et al.  Dual tunneling-unit scanning tunneling microscope for length measurement based on crystalline lattice , 1997 .

[2]  Isaak D. Mayergoyz,et al.  Dynamic Preisach models of hysteresis , 1988 .

[3]  Kee S. Moon,et al.  Optimal design of a flexure hinge based XYφ wafer stage , 1997 .

[4]  Ying-Shieh Kung,et al.  A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm , 2006 .

[5]  Chieh-Li Chen,et al.  Modeling and Analysis of Thermal-management Impacts on Transient Performances of PEM Fuel Cells , 2011 .

[6]  Andrew J. Fleming,et al.  High-speed vertical positioning for contact-mode atomic force microscopy , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[7]  K. Youcef-Toumi,et al.  Coupling in piezoelectric tube scanners used in scanning probe microscopes , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[8]  Ming-Jyi Jang,et al.  Modeling and control of a piezoelectric actuator driven system with asymmetric hysteresis , 2009, J. Frankl. Inst..

[9]  K.K. Leang,et al.  Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/asjc.090 HIGH-SPEED SERIAL-KINEMATIC SPM SCANNER: DESIGN AND DRIVE CONSIDERATIONS , 2022 .

[10]  John F. O’Hanlon,et al.  Vacuum pump fluids , 1984 .

[11]  S H Chang,et al.  An ultra-precision XYtheta(Z) piezo-micropositioner. I. Design and analysis. , 1999, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[12]  Qingsong Xu,et al.  Dahl Model-Based Hysteresis Compensation and Precise Positioning Control of an XY Parallel Micromanipulator With Piezoelectric Actuation , 2010 .

[13]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[14]  Nelson Sadowski,et al.  The inverse Jiles-Atherton model parameters identification , 2003 .

[15]  Chieh-Li Chen,et al.  Observer-based robust AILC for robotic system tracking problem , 2009 .

[16]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[17]  B. D. Coleman,et al.  A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials , 1986 .

[18]  Andrew J. Fleming,et al.  High‐speed serial‐kinematic SPM scanner: design and drive considerations , 2009 .

[19]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[20]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[21]  Leon O. Chua,et al.  A Generalized Hysteresis Model , 1972 .

[22]  Chih-Jer Lin,et al.  Evolutionary algorithm based feedforward control for contouring of a biaxial piezo-actuated stage , 2009 .

[23]  Paul K. Hansma,et al.  Design and input-shaping control of a novel scanner for high-speed atomic force microscopy , 2008 .

[24]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.

[25]  Seung-Woo Kim,et al.  An ultraprecision stage for alignment of wafers in advanced microlithography , 1997 .

[26]  Vi-Kwei Wen,et al.  Method for random vibration hysteretics system , 1976 .

[27]  Qingze Zou,et al.  A review of feedforward control approaches in nanopositioning for high-speed spm , 2009 .

[28]  Paolo Nistri,et al.  Mathematical Models for Hysteresis , 1993, SIAM Rev..

[29]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[30]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[31]  Rong-Fong Fung,et al.  System identification of a dual-stage XY precision positioning table , 2009 .

[32]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .