Distributed resource allocation for proportional fairness in multi-band wireless systems

A challenging problem in multi-band multi-cell self-organized wireless systems, such as multi-channel Wi-Fi networks, femto/pico cells in 3G/4G cellular networks, and more recent wireless networks over TV white spaces, is of distributed resource allocation. This involves four components: channel selection, client association, channel access, and client scheduling. In this paper, we present a unified framework for jointly addressing the four components with the global system objective of maximizing the clients throughput in a proportionally fair manner. Our formulation allows a natural dissociation of the problem into two sub-parts. We show that the first part, involving channel access and client scheduling, is convex and derive a distributed adaptation procedure for achieving Pareto-optimal solution. For the second part, involving channel selection and client association, we develop a Gibbs-sampler based approach for local adaptation to achieve the global objective, as well as derive fast greedy algorithms from it that achieve good solutions.

[1]  P. Bahl,et al.  SSCH: slotted seeded channel hopping for capacity improvement in IEEE 802.11 ad-hoc wireless networks , 2004, MobiCom '04.

[2]  Matthew S. Grob,et al.  CDMA/HDR: a bandwidth-efficient high-speed wireless data service for nomadic users , 2000, IEEE Commun. Mag..

[3]  Vikram Srinivasan,et al.  Dynamic spectrum access in DTV whitespaces: design rules, architecture and algorithms , 2009, MobiCom '09.

[4]  Seung-Jae Han,et al.  Fairness and Load Balancing in Wireless LANs Using Association Control , 2004, IEEE/ACM Transactions on Networking.

[5]  Harish Viswanathan,et al.  Self-Organizing Dynamic Fractional Frequency Reuse for Best-Effort Traffic through Distributed Inter-Cell Coordination , 2009, IEEE INFOCOM 2009.

[6]  Yang Richard Yang,et al.  Proportional Fairness in Multi-Rate Wireless LANs , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[7]  Paul Muhlethaler,et al.  A Spatial Reuse Aloha MAC Protocol for Multihop Wireless Mobile Networks , 2003 .

[8]  Alexander L. Stolyar,et al.  Random-access scheduling with service differentiation in wireless networks , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[9]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[10]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[11]  John V. Guttag,et al.  Time-based Fairness Improves Performance in Multi-Rate WLANs , 2004, USENIX Annual Technical Conference, General Track.

[12]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Matthew Andrews,et al.  Providing quality of service over a shared wireless link , 2001, IEEE Commun. Mag..

[14]  Harish Viswanathan,et al.  Self-Organizing Dynamic Fractional Frequency Reuse in OFDMA Systems , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[15]  Chai-Keong Toh,et al.  Ad Hoc Mobile Wireless Networks , 2002 .

[16]  PROPAGATION DATA AND PREDICTION METHODS FOR THE PLANNING OF INDOOR RADIOCOMMUNICATION SYSTEMS AND RADIO LOCAL AREA NETWORKS IN THE FREQUENCY RANGE 900 MHz TO 100 GHz , 1997 .

[17]  R. Rozovsky,et al.  SEEDEX: a MAC protocol for ad hoc networks , 2001, MobiHoc '01.

[18]  Martin Heusse,et al.  Performance anomaly of 802.11b , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[19]  P. Gupta,et al.  Optimal Throughput Allocation in General Random-Access Networks , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[20]  Nitin H. Vaidya,et al.  Multi-channel mac for ad hoc networks: handling multi-channel hidden terminals using a single transceiver , 2004, MobiHoc '04.

[21]  Konstantina Papagiannaki,et al.  Measurement-Based Self Organization of Interfering 802.11 Wireless Access Networks , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[22]  Jeffrey G. Andrews,et al.  Femtocell networks: a survey , 2008, IEEE Communications Magazine.

[23]  Jing Deng,et al.  Dual busy tone multiple access (DBTMA): a new medium access control for packet radio networks , 1998, ICUPC '98. IEEE 1998 International Conference on Universal Personal Communications. Conference Proceedings (Cat. No.98TH8384).

[24]  Alexander L. Stolyar,et al.  Optimal utility based multi-user throughput allocation subject to throughput constraints , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[25]  Michael G. Barry,et al.  Supporting service differentiation in wireless packet networks using distributed control , 2001, IEEE J. Sel. Areas Commun..

[26]  Afef Feki,et al.  Autonomous Spectrum Sharing for Mixed LTE Femto and Macro Cells Deployments , 2010, 2010 INFOCOM IEEE Conference on Computer Communications Workshops.

[27]  Paramvir Bahl,et al.  White space networking with wi-fi like connectivity , 2009, SIGCOMM '09.