Impact of topology in foliated quantum Einstein gravity

We use a functional renormalization group equation tailored to the Arnowitt–Deser–Misner formulation of gravity to study the scale dependence of Newton’s coupling and the cosmological constant on a background spacetime with topology $$S^1 \times S^d$$S1×Sd. The resulting beta functions possess a non-trivial renormalization group fixed point, which may provide the high-energy completion of the theory through the asymptotic safety mechanism. The fixed point is robust with respect to changing the parametrization of the metric fluctuations and regulator scheme. The phase diagrams show that this fixed point is connected to a classical regime through a crossover. In addition the flow may exhibit a regime of “gravitational instability”, modifying the theory in the deep infrared. Our work complements earlier studies of the gravitational renormalization group flow on a background topology $$S^1 \times T^d$$S1×Td (Biemans et al. Phys Rev D 95:086013, 2017, Biemans et al. arXiv:1702.06539, 2017) and establishes that the flow is essentially independent of the background topology.

[1]  J. Jurkiewicz,et al.  Impact of topology in causal dynamical triangulations quantum gravity , 2016, 1604.08786.

[2]  Adriano Contillo,et al.  Renormalization group flow of Hořava-Lifshitz gravity at low energies , 2013 .

[3]  Copenhagen,et al.  Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.

[4]  F. Saueressig,et al.  Asymptotic freedom in Hořava-Lifshitz gravity. , 2014, Physical review letters.

[5]  Nobuyoshi Ohta,et al.  Renormalization group equation for f(R) gravity on hyperbolic spaces , 2016, 1607.08460.

[6]  Andreas Nink,et al.  The unitary conformal field theory behind 2D Asymptotic Safety , 2015, 1512.06805.

[7]  Euclidean Dynamical Triangulation revisited: is the phase transition really 1st order? , 2013, 1503.03706.

[8]  Frank Saueressig,et al.  Quantum gravity on foliated spacetimes: Asymptotically safe and sound , 2016, 1609.04813.

[9]  W. Ziegler General Relativity An Einstein Centenary Survey , 2016 .

[10]  J. Jurkiewicz,et al.  Second-order phase transition in causal dynamical triangulations. , 2011, Physical review letters.

[11]  Holger Gies,et al.  Generalized parametrization dependence in quantum gravity , 2015, 1507.08859.

[12]  Wataru Souma,et al.  Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.

[13]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.

[14]  Frank Saueressig,et al.  The R^2 phase-diagram of QEG and its spectral dimension , 2012, 1206.0657.

[15]  Jan M. Pawlowski Aspects of the functional renormalisation group , 2007 .

[16]  Frank Saueressig,et al.  Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.

[17]  Daniel Becker,et al.  Propagating gravitons vs. ‘dark matter’ in asymptotically safe quantum gravity , 2014, 1407.5848.

[18]  S. Nagy,et al.  Critical exponents in quantum Einstein gravity , 2013, 1307.0765.

[19]  C. Wetterich,et al.  Graviton fluctuations erase the cosmological constant , 2017, 1704.08040.

[20]  D. Vassilevich,et al.  Heat kernel expansion: user's manual , 2003, hep-th/0306138.

[21]  Frank Saueressig,et al.  Asymptotically safe Lorentzian gravity. , 2011, Physical review letters.

[22]  Frank Saueressig,et al.  Renormalization group fixed points of foliated gravity-matter systems , 2017, 1702.06539.

[23]  Jan M. Pawlowski,et al.  Asymptotic safety of gravity-matter systems , 2015, 1510.07018.

[24]  Christoph Rahmede,et al.  Further evidence for asymptotic safety of quantum gravity , 2014, 1410.4815.

[25]  R. Percacci,et al.  Gauges and functional measures in quantum gravity II: higher-derivative gravity , 2016, 1610.07991.

[26]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[27]  J. Jurkiewicz,et al.  Nonperturbative quantum de Sitter universe , 2008, 0807.4481.

[28]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[29]  Frank Saueressig,et al.  Taming perturbative divergences in asymptotically safe gravity , 2009, 0902.4630.

[30]  J. Smit Continuum interpretation of the dynamical-triangulation formulation of quantum Einstein gravity , 2013, 1304.6339.

[31]  Kevin Falls,et al.  Physical renormalization schemes and asymptotic safety in quantum gravity , 2017, 1702.03577.

[32]  Frank Saueressig,et al.  RG flows of Quantum Einstein Gravity in the linear-geometric approximation , 2014, 1412.7207.

[33]  Jerzy Jurkiewicz,et al.  Searching for a continuum limit in causal dynamical triangulation quantum gravity , 2016, 1603.02076.

[34]  S. Nagy,et al.  Lectures on renormalization and asymptotic safety , 2012, 1211.4151.

[35]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[36]  J. Jurkiewicz,et al.  Euclidian 4d quantum gravity with a non-trivial measure term , 2013, 1307.2270.

[37]  R. Percacci,et al.  Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.

[38]  Carlo Pagani,et al.  Consistent closure of renormalization group flow equations in quantum gravity , 2013, 1304.4777.

[39]  Jan M. Pawlowski,et al.  Global Flows in Quantum Gravity , 2014, 1403.1232.

[40]  Mikhail Shaposhnikov,et al.  Asymptotic safety of gravity and the Higgs-boson mass , 2009, 0912.0208.

[41]  Daniele Oriti,et al.  Approaches to Quantum Gravity: Approaches to Quantum Gravity , 2009 .

[42]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[43]  T. Morris,et al.  Large curvature and background scale independence in single-metric approximations to asymptotic safety , 2016, 1610.03081.

[44]  Martin Reuter,et al.  Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety , 2009, 0907.2617.

[45]  A. Görlich,et al.  Planckian birth of a quantum de sitter universe. , 2007, Physical review letters.

[46]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[47]  J. Jurkiewicz,et al.  Nonperturbative quantum gravity , 2012, 1203.3591.

[48]  Peter Labus,et al.  Background independence in a background dependent renormalization group , 2016, 1603.04772.

[49]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[50]  Petr Hořava Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.

[51]  R. Percacci A Short introduction to asymptotic safety , 2011, 1110.6389.

[52]  Jerzy Jurkiewicz,et al.  Second- and first-order phase transitions in causal dynamical triangulations , 2012 .

[53]  J. Jurkiewicz,et al.  Renormalization group flow in CDT , 2014, 1405.4585.

[54]  Martin Reuter,et al.  QED coupled to QEG , 2011, 1101.6007.

[55]  Michael Strickland,et al.  Optimization of renormalization group flow , 1999, hep-th/9905206.

[56]  Reconstructing the universe , 2005, hep-th/0505154.

[57]  Roberto Percacci,et al.  The background scale Ward identity in quantum gravity , 2016, 1611.07005.

[58]  Jan M. Pawlowski,et al.  Quantum-gravity effects on a Higgs-Yukawa model , 2016, 1604.02041.

[59]  R. Percacci,et al.  Gauges and functional measures in quantum gravity I: Einstein theory , 2016, 1605.00454.

[60]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[61]  M. Reuter,et al.  Quantum gravity at astrophysical distances , 2004 .

[62]  J. Jurkiewicz,et al.  The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.

[63]  Holger Gies,et al.  Gravitational Two-Loop Counterterm Is Asymptotically Safe. , 2016, Physical review letters.

[64]  Jan M. Pawlowski,et al.  Fixed points and infrared completion of quantum gravity , 2012, 1209.4038.

[65]  Tim R. Morris The Exact renormalization group and approximate solutions , 1994 .

[66]  Daniel F. Litim,et al.  Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[67]  A. Görlich,et al.  Characteristics of the new phase in CDT , 2016, The European physical journal. C, Particles and fields.

[68]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[69]  J. Jurkiewicz,et al.  Geometry of the quantum universe , 2010, 1001.4581.

[70]  J. Vidal,et al.  Optimization of the derivative expansion in the nonperturbative renormalization group , 2003 .

[71]  M. Yamada,et al.  Non-minimal coupling in Higgs–Yukawa model with asymptotically safe gravity , 2015, 1510.03734.

[72]  E. Poisson A Relativist's Toolkit: Contents , 2004 .

[73]  D. Litim Optimisation of the exact renormalisation group , 2000, hep-th/0005245.

[74]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[75]  A. Barvinsky,et al.  The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity , 1985 .

[76]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[77]  Martin Reuter,et al.  Effective average action for gauge theories and exact evolution equations , 1994 .

[78]  Frank Saueressig,et al.  Fractal space-times under the microscope: a renormalization group view on Monte Carlo data , 2011, 1110.5224.

[79]  Frank Saueressig,et al.  Matter Induced Bimetric Actions for Gravity , 2010, 1003.5129.

[80]  Frank Saueressig,et al.  A functional renormalization group equation for foliated spacetimes , 2012, 1212.5114.

[81]  Jan M. Pawlowski,et al.  The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows , 2012, 1203.4207.

[82]  J. Laiho,et al.  Lattice Quantum Gravity and Asymptotic Safety , 2016, 1604.02745.

[83]  Jan M. Pawlowski,et al.  Local Quantum Gravity , 2015, 1506.07016.

[84]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[85]  L. Zambelli,et al.  Gravitational corrections to Yukawa systems , 2009, 0904.0938.

[86]  Daniel Becker,et al.  Towards a C-function in 4D quantum gravity , 2014 .