Variability of shell repair in the Manila clam Ruditapes philippinarum affected by the Brown Ring Disease: a microstructural and biochemical study.

[1]  C. Paillard,et al.  Resistance to Brown Ring Disease in the Manila clam, Ruditapes philippinarum: a study of selected stocks showing a recovery process by shell repair. , 2010, Journal of invertebrate pathology.

[2]  C. Paillard,et al.  Clam shell repair from the brown ring disease: a study of the organic matrix using Confocal Raman micro-spectrometry and WDS microprobe , 2010, Analytical and bioanalytical chemistry.

[3]  P. Soudant,et al.  Variability of the hemocyte parameters of Ruditapes philippinarum in the field during an annual cycle. , 2009 .

[4]  C. Paillard,et al.  Shell repair in the clam Ruditapes philippinarum, affected by the Brown Ring Disease (BRD): a biochemical and serological study. , 2009 .

[5]  W. Landis Structure-property relationships in biomineralized and biomimetic composites , 2009 .

[6]  B. Marie,et al.  Nacre Calcification in the Freshwater Mussel Unio pictorum: Carbonic Anhydrase Activity and Purification of a 95 kDa Calcium‐Binding Glycoprotein , 2008, Chembiochem : a European journal of chemical biology.

[7]  E. Kádár,et al.  Post-capture hyperbaric simulations to study the mechanism of shell regeneration of the deep-sea hydrothermal vent mussel Bathymodiolus azoricus (Bivalvia: Mytilidae) , 2008 .

[8]  J. Lebel,et al.  Shell repair process in the green ormer Haliotis tuberculata: a histological and microstructural study. , 2008, Tissue & cell.

[9]  Masato Yano,et al.  Tyrosinase localization in mollusc shells. , 2007, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[10]  R. Day,et al.  Shell disease: abnormal conchiolin deposit in the abalone Haliotis tuberculata. , 2006, Diseases of aquatic organisms.

[11]  Antonio G Checa,et al.  Self-organisation of nacre in the shells of Pterioida (Bivalvia: Mollusca). , 2005, Biomaterials.

[12]  F. Marin,et al.  The compositional analysis of recent cephalopod shell carbohydrates by Fourier transform infrared spectrometry and high performance anion exchange-pulsed amperometric detection , 1995, Experientia.

[13]  Xianghong Meng,et al.  Purification and characterization of phenoloxidase from clam Ruditapes philippinarum. , 2005, Fish & shellfish immunology.

[14]  C. Paillard A short-review of brown ring disease, a vibriosis affecting clams, Ruditapes philippinarum and Ruditapes decussatus , 2004 .

[15]  J. Kere,et al.  Hemocyte-Mediated Shell Mineralization in the Eastern Oyster , 2004, Science.

[16]  F. Marin Molluscan Shell Matrix Characterization by Preparative SDS-PAGE , 2003, TheScientificWorldJournal.

[17]  P. Probert,et al.  Evaluation of radiography, ultrasonography and endoscopy for detection of shell lesions in live abalone Haliotis iris (Mollusca: Gastropoda). , 2002, Diseases of aquatic organisms.

[18]  F. Marín,et al.  Large-scale fractionation of molluscan shell matrix. , 2001, Protein expression and purification.

[19]  R. Day,et al.  Change in the rate of shell deposition and shell microstructure in response to shell borers in the abalone haliotis rubra , 2001 .

[20]  B. Hannoyer,et al.  Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses of mineral and organic matrix during heating of mother of pearl (nacre) from the shell of the mollusc Pinctada maxima. , 1999, Journal of biomedical materials research.

[21]  J. Marxen,et al.  Carbohydrates of the Organic Shell Matrix and the Shell-Forming Tissue of the Snail Biomphalaria glabrata (Say). , 1998, The Biological bulletin.

[22]  C. Paillard,et al.  The Brown Ring Disease in the Manila Clam, Ruditapes philippinarum: I. Ultrastructural Alterations of the Periostracal Lamina , 1995 .

[23]  C. Paillard,et al.  The brown ring disease in the manila clam, Ruditapes philippinarum. II: Microscopic study of the brown ring syndrome , 1995 .

[24]  F. Marin,et al.  Caractérisations électrophorétique et immunologique des matrices organiques solubles des tests de deux Bivalves Ptériomorphes actuels, Pinna nobilis L. et Pinctada margaritifera (L.) , 1994 .

[25]  D. Fautin,et al.  Scyphomedusae and their polyps are the same immunologically: implications for systematics. , 1992, Comparative biochemistry and physiology. B, Comparative biochemistry.

[26]  J. Nicolas,et al.  L'elevage de la palourde, programme national de recherche sur la maladie de l'anneau brun , 1992 .

[27]  M. Shimamoto Shell Microstructure of the Veneridae (Bivalvia) and its Phylogenetic Implications , 1986 .

[28]  S. Weiner,et al.  Mollusk shell organic matrix: Fourier transform infrared study of the acidic macromolecules , 1986 .

[29]  J. Waite,et al.  Quinone-Tanned Scleroproteins , 1983 .

[30]  J. Morrissey,et al.  Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. , 1981, Analytical biochemistry.

[31]  D. Rhoads,et al.  Skeletal Growth of Aquatic Organisms , 1980 .

[32]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. N. Adams,et al.  Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. , 1977, The Journal of general virology.

[34]  S. P. Kapur,et al.  The role of amoebocytes in the regeneration of shell in the land pulmonate, Euplecta indica (Pfieffer). , 1970, The Biological bulletin.

[35]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[36]  O. Bøggild The shell structure of the Mollusks , 1930 .