Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic

We present a formalization of a linear version of Abadi and Plotkin’s logic for parametricity for a polymorphic dual intuitionistic / linear type theory with fixed points, and show, following Plotkin’s suggestions, that it can be used to define a wide collection of types, including solutions to recursive domain equations. We further define a notion of parametric LAPL-structure and prove that it provides a sound and complete class of models for the logic. Finally, we present a concrete parametric parametric LAPL-structure based on suitable categories of partial equivalence relations over a universal model of the untyped lambda calculus.

[1]  Martín Abadi,et al.  A Logic for Parametric Polymorphism , 1993, TLCA.

[2]  J. Y. Girard,et al.  Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .

[3]  Giuseppe Rosolini,et al.  Using Synthetic Domain Theory to Prove Operational Properties of a Polymorphic Programming Language Based on Strictness , 2004 .

[4]  Andrew M. Pitts,et al.  Parametric polymorphism and operational equivalence , 2000, Mathematical Structures in Computer Science.

[5]  Benjamin C. Pierce,et al.  Types and programming languages: the next generation , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[6]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[7]  Axel Poigné,et al.  A Note on Inconsistencies Caused by Fixpoints in a Cartesian Closed Category , 1990, Theor. Comput. Sci..

[8]  Daniele Turi,et al.  Axiomatic domain theory in categories of partial maps , 1998 .

[9]  K. Lempert,et al.  CONDENSED 1,3,5-TRIAZEPINES - IV THE SYNTHESIS OF 2,3-DIHYDRO-1H-IMIDAZO-[1,2-a] [1,3,5] BENZOTRIAZEPINES , 1983 .

[10]  Valeria de Paiva,et al.  Relating Categorical Semantics for Intuitionistic Linear Logic , 2005, Appl. Categorical Struct..

[11]  Claudio V. Russo,et al.  Operational Properties of Lily, a Polymorphic Linear Lambda Calculus with Recursion , 2001, HOOTS.

[12]  Alex K. Simpson,et al.  A uniform approach to domain theory in realizability models , 1997, Mathematical Structures in Computer Science.

[13]  Izumi Takeuti An Axiomatic System of Parametricity , 1998, Fundam. Informaticae.

[14]  Philip Wadler,et al.  The Girard-Reynolds isomorphism (second edition) , 2007, Theor. Comput. Sci..

[15]  Rasmus Ejlers Møgelberg,et al.  Synthetic Domain Theory and Models of Linear Abadi & Plotkin Logic , 2005, MFPS.

[16]  Rasmus Ejlers Møgelberg,et al.  Categorical Models of PILL , 2005 .

[17]  LARS BIRKEDAL,et al.  Categorical Models for Abadi-Plotkin ’ s Logic for Parametricity , 2005 .

[18]  N. S. Barnett,et al.  Private communication , 1969 .

[19]  Bart Jacobs,et al.  Categorical Logic and Type Theory , 2001, Studies in logic and the foundations of mathematics.

[20]  Lucan,et al.  5 = 6 M , 1993 .

[21]  John C. Reynolds,et al.  Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.

[22]  Andrew G. Barber,et al.  Linear type theories, semantics and action calculi , 1997 .

[23]  Rasmus Ejlers Møgelberg,et al.  Categorical models for Abadi and Plotkin's logic for parametricity , 2005, Mathematical Structures in Computer Science.