Using a web Personal Evaluation Tool - PET for lexicographic multi-criteria service selection

The amount of information stored on the Internet grows every day. Users are forced to deal with an overwhelming number of possibilities, and continuously make decisions if they want to obtain meaningful information or services. The paper describes an approach for a simple yet effective selection of the most suitable information and web services that fit user's needs. The novelty of the approach is twofold: the concept of lexicographical preferences is distinctively used for a multi-criteria decision-making; a simple mechanism of representing user's criterion satisfaction levels is proposed. The lexicographic preferences allow for mimicking user's attitude that some criteria should be satisfied before other criteria are considered. The criterion satisfaction levels are defined with a single threshold that represents a boundary value between acceptable and unacceptable values of attributes of alternatives. The paper includes results of case studies preformed on a prototype of a web selection system built using the proposed approach.

[1]  Pam Werre The University of Minnesota Press , 2009 .

[2]  Yiyu Yao Measuring retrieval effectiveness based on user preference of documents , 1995 .

[3]  T.V. Prabhakar,et al.  Dynamic selection of Web services with recommendation system , 2005, International Conference on Next Generation Web Services Practices (NWeSP'05).

[4]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[5]  M. Ehrgott A Characterization of Lexicographic Max-Ordering Solutions , 1999 .

[6]  E. Michael Maximilien,et al.  A framework and ontology for dynamic Web services selection , 2004, IEEE Internet Computing.

[7]  Thomas Hofmann,et al.  A joint framework for collaborative and content filtering , 2004, SIGIR '04.

[8]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[9]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[10]  Yi-Fen Chen,et al.  Herd behavior in purchasing books online , 2008, Comput. Hum. Behav..

[11]  Josep Lluís de la Rosa i Esteva,et al.  A Taxonomy of Recommender Agents on the Internet , 2003, Artificial Intelligence Review.

[12]  Ronald Fagin,et al.  Comparing and aggregating rankings with ties , 2004, PODS '04.

[13]  Michalis Vazirgiannis,et al.  Web personalization integrating content semantics and navigational patterns , 2004, WIDM '04.

[14]  Stefano Mizzaro,et al.  Ephemeral and Persistent Personalization in Adaptive Information Access to Scholarly Publications on the Web , 2002, AH.

[15]  Gediminas Adomavicius,et al.  New Recommendation Techniques for Multicriteria Rating Systems , 2007, IEEE Intelligent Systems.

[16]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[17]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .

[18]  Macarena Espinilla,et al.  A Knowledge Based Recommender System Based on Consistent Preference Relations , 2008 .

[19]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[20]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[21]  I. Ashikhmin,et al.  UniComBOS—Intelligent Decision Support System for multi-criteria comparison and choice , 2005 .

[22]  Horst A. Eiselt,et al.  Brand positioning under lexicographic choice rules , 1999, Eur. J. Oper. Res..

[23]  P. Goodwin,et al.  Weight approximations in multi-attribute decision models , 2002 .

[24]  Nikolaos F. Matsatsinis,et al.  User profiling based on multi-criteria analysis: the role of utility functions , 2009, Oper. Res..

[25]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[26]  R. Yager Families of OWA operators , 1993 .

[27]  Francisco Herrera,et al.  Multiperson decision-making based on multiplicative preference relations , 2001, Eur. J. Oper. Res..

[28]  Francisco Herrera,et al.  Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations , 1998, Fuzzy Sets Syst..

[29]  R. Kohli,et al.  Internet Recommendation Systems , 2000 .

[30]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[31]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[32]  Tsvi Kuflik,et al.  Mediation of user models for enhanced personalization in recommender systems , 2007, User Modeling and User-Adapted Interaction.

[33]  Peter Drucker,et al.  A Brief History of Decision Support Systems , 2006 .

[34]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[35]  Domonkos Tikk,et al.  Scalable Collaborative Filtering Approaches for Large Recommender Systems , 2009, J. Mach. Learn. Res..

[36]  Dietmar Jannach,et al.  ADVISOR SUITE - A Knowledge-Based Sales Advisory-System , 2004, ECAI.

[37]  Izak Benbasat,et al.  Attributions of Trust in Decision Support Technologies: A Study of Recommendation Agents for E-Commerce , 2008, J. Manag. Inf. Syst..

[38]  Michael J. Pazzani,et al.  User Modeling for Adaptive News Access , 2000, User Modeling and User-Adapted Interaction.

[39]  Alexander Felfernig,et al.  Constraint-based recommender systems: technologies and research issues , 2008, ICEC.

[40]  Ralph Bergmann,et al.  Applying case-based reasoning technology for product selection and customization in electronic comme , 1999 .

[41]  Robin Burke,et al.  Knowledge-based recommender systems , 2000 .

[42]  Robin M. Hogarth,et al.  "Take-the-best" and other simple strategies: Why and when they work "well" with binary cues , 2006 .

[43]  Gerhard Friedrich,et al.  An Integrated Environment for the Development of Knowledge-Based Recommender Applications , 2006, Int. J. Electron. Commer..

[44]  Takanobu Nakahara,et al.  Recommender System for Music CDs Using a Graph Partitioning Method , 2009, KES.

[45]  P. Slovic The Construction of Preference , 1995 .

[46]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[47]  Markus Zanker,et al.  Case-studies on exploiting explicit customer requirements in recommender systems , 2009, User Modeling and User-Adapted Interaction.

[48]  John Riedl,et al.  ClustKNN: A Highly Scalable Hybrid Model- & Memory-Based CF Algorithm , 2006 .

[49]  G Gigerenzer,et al.  Reasoning the fast and frugal way: models of bounded rationality. , 1996, Psychological review.

[50]  Kun Chang Lee,et al.  Online shopping recommendation mechanism and its influence on consumer decisions and behaviors: A causal map approach , 2008, Expert Syst. Appl..

[51]  T. Tanino On Group Decision Making under Fuzzy Preferences , 1990 .

[52]  Hans Tompits,et al.  A knowledge-based approach for selecting information sources* , 2006, Theory and Practice of Logic Programming.

[53]  John Riedl,et al.  Recommender systems in e-commerce , 1999, EC '99.

[54]  Iver Mysterud,et al.  Take the best , 2000 .

[55]  Anupam Joshi,et al.  Using incremental Web log mining to create adaptive web servers , 2005, International Journal on Digital Libraries.

[56]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[57]  D. McShan,et al.  Lexicographic ordering: intuitive multicriteria optimization for IMRT , 2007, Physics in medicine and biology.

[58]  F. Herrera,et al.  A classification method of alternatives for multiple preference ordering criteria based on fuzzy majority. , 1996 .

[59]  Monika Schubert Personalized query relaxations and repairs in knowledge-based recommendation , 2009, RecSys '09.

[60]  Naren Ramakrishnan,et al.  Scouts, promoters, and connectors: The roles of ratings in nearest-neighbor collaborative filtering , 2007, TWEB.

[61]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[62]  Pat Langley,et al.  A Personalized System for Conversational Recommendations , 2011, J. Artif. Intell. Res..

[63]  Li Chen,et al.  Survey of Preference Elicitation Methods , 2004 .

[64]  Yi-Shin Chen,et al.  An Adaptive Recommendation System without Explicit Acquisition of User Relevance Feedback , 2004, Distributed and Parallel Databases.

[65]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[66]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[67]  Gerhard Friedrich,et al.  Persuasive Recommendation: Serial Position Effects in Knowledge-Based Recommender Systems , 2007, PERSUASIVE.

[68]  Bruce Krulwich,et al.  LIFESTYLE FINDER: Intelligent User Profiling Using Large-Scale Demographic Data , 1997, AI Mag..

[69]  Ronald R. Yager,et al.  On Weighted median Aggregation , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[70]  Ronald R. Yager,et al.  Prioritized aggregation operators , 2008, Int. J. Approx. Reason..

[71]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[72]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[73]  Kenneth Ward Church Approximate Lexicography and Web Search , 2008 .

[74]  Oleg I. Larichev,et al.  Verbal Decision Analysis for Unstructured Problems , 1997 .

[75]  Christian Posse,et al.  Bayesian Mixed-Effects Models for Recommender Systems , 1999 .

[76]  Bamshad Mobasher,et al.  Using Ontologies to Discover Domain-Level Web Usage Profiles , 2002 .

[77]  Riccardo Scarpa,et al.  Lexicographic Preferences in Discrete Choice Experiments: Consequences on Individual-Specific Willingness to Pay Estimates , 2006 .

[78]  Robin M. Hogarth,et al.  “Take-the-Best” and Other Simple Strategies: Why and When they Work “Well” with Binary Cues , 2006 .

[79]  Sang Hyun Choi,et al.  Personalized recommendation system based on product specification values , 2006, Expert Syst. Appl..

[80]  Robin D. Burke,et al.  The Wasabi Personal Shopper: A Case-Based Recommender System , 1999, AAAI/IAAI.

[81]  Shuk Ying Ho,et al.  Web Personalization as a Persuasion Strategy: An Elaboration Likelihood Model Perspective , 2005, Inf. Syst. Res..

[82]  Evangelos Triantaphyllou,et al.  Multi-criteria Decision Making Methods: A Comparative Study , 2000 .

[83]  Hei-Chia Wang,et al.  Combining subjective and objective QoS factors for personalized web service selection , 2007, Expert Syst. Appl..

[84]  M. Resnik Choices: An Introduction to Decision Theory , 1990 .

[85]  Quan Zhang,et al.  Decision consolidation: criteria weight determination using multiple preference formats , 2004, Decis. Support Syst..

[86]  Yongtae Park,et al.  Collaborative Filtering Using Dual Information Sources , 2007, IEEE Intelligent Systems.

[87]  Bruce E. Barrett,et al.  Decision quality using ranked attribute weights , 1996 .

[88]  Andrew Jennings,et al.  A user model neural network for a personal news service , 1993, User Modeling and User-Adapted Interaction.

[89]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[90]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[91]  Brendon Towle,et al.  Knowledge Based Recommender Systems Using Explicit User Models , 2000 .

[92]  Francesco Ricci,et al.  Case Base Querying for Travel Planning Recommendation , 2001, J. Inf. Technol. Tour..

[93]  Mark P. Wachowiak,et al.  Aggregation operators for selection problems , 2002, Fuzzy Sets Syst..