Recent Results on Illumination Problems

[1]  L. Tóth Illumination of convex discs , 1977 .

[2]  P. Mani Inner illumination of convex polytopes , 1974 .

[3]  P. Valtr Guarding galleries where no point sees a small area , 1998 .

[4]  Marek Lassak Solution of Hadwiger's Covering Problem for Centrally Symmetric Convex Bodies in E3 , 1984 .

[5]  Helmut Groemer,et al.  Abschätzungen für die Anzahl der konvexen Körper, die einen konvexen Körper berühren , 1961 .

[6]  Diane L. Souvaine,et al.  An efficient algorithm for guard placement in polygons with holes , 1995, Discret. Comput. Geom..

[7]  On Grünbaum's problem about inner illumination of convex bodies , 1995 .

[8]  G. Kalai,et al.  Guarding galleries where every point sees a large area , 1997 .

[9]  R. Stanley The Upper Bound Conjecture and Cohen‐Macaulay Rings , 1975 .

[10]  Horst Martini,et al.  On Grünbaum's Conjecture about Inner Illumination of Convex Bodies , 1999, Discret. Comput. Geom..

[11]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[12]  K. Bezdek,et al.  Hadwiger-Levi’s Covering Problem Revisited , 1993 .

[13]  Jorge Urrutia,et al.  Illuminating Rectangles and Triangles in the Plane , 1993, J. Comb. Theory, Ser. B.

[14]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[15]  Jorge Urrutia,et al.  Illuminating high-dimensional convex sets , 1995 .

[16]  Prosenjit Bose,et al.  Guarding Polyhedral Terrains , 1997, Comput. Geom..

[17]  K. Bezdek THE PROBLEM OF ILLUMINATION OF THE BOUNDARY OF A CONVEX BODY BY AFFINE SUBSPACES , 1991 .

[18]  Jorge Urrutia,et al.  On illuminating line segments in the plane , 1995, Discret. Math..

[19]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[20]  Vladimir G. Boltyanski,et al.  A solution of Hadwiger's covering problem for zonoids , 1992, Comb..

[21]  Jorge Urrutia,et al.  Illumination of Polygons with Vertex Lights , 1995, Inf. Process. Lett..

[22]  A. Bezdek,et al.  On illumination in the plane by line segments , 1992 .

[23]  Wm. Randolph Franklin,et al.  Art Gallery Theorems and Algorithms (Joseph O'Rourke) , 1989, SIAM Rev..

[24]  V. Boltyanski,et al.  Excursions into Combinatorial Geometry , 1996 .

[25]  F. Levi Überdeckung eines Eibereiches durch Parallelverschiebung seines offenen Kerns , 1955 .

[26]  Steve Fisk,et al.  A short proof of Chvátal's Watchman Theorem , 1978, J. Comb. Theory, Ser. B.

[27]  Chuanming Zong Some remarks concerning kissing numbers, blocking numbers and covering numbers , 1995 .

[28]  Frank Hoffmann,et al.  The art gallery theorem for polygons with holes , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[29]  O. Schramm Illuminating Sets of Constant Width , 1988 .

[30]  Zoltán Füredi,et al.  The prison yard problem , 1994, Comb..

[31]  V. Chvátal A combinatorial theorem in plane geometry , 1975 .

[32]  T. Shermer Recent Results in Art Galleries , 1992 .

[33]  Raimund Seidel,et al.  On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..