Recent Results on Illumination Problems
暂无分享,去创建一个
[1] L. Tóth. Illumination of convex discs , 1977 .
[2] P. Mani. Inner illumination of convex polytopes , 1974 .
[3] P. Valtr. Guarding galleries where no point sees a small area , 1998 .
[4] Marek Lassak. Solution of Hadwiger's Covering Problem for Centrally Symmetric Convex Bodies in E3 , 1984 .
[5] Helmut Groemer,et al. Abschätzungen für die Anzahl der konvexen Körper, die einen konvexen Körper berühren , 1961 .
[6] Diane L. Souvaine,et al. An efficient algorithm for guard placement in polygons with holes , 1995, Discret. Comput. Geom..
[7] On Grünbaum's problem about inner illumination of convex bodies , 1995 .
[8] G. Kalai,et al. Guarding galleries where every point sees a large area , 1997 .
[9] R. Stanley. The Upper Bound Conjecture and Cohen‐Macaulay Rings , 1975 .
[10] Horst Martini,et al. On Grünbaum's Conjecture about Inner Illumination of Convex Bodies , 1999, Discret. Comput. Geom..
[11] David Haussler,et al. ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..
[12] K. Bezdek,et al. Hadwiger-Levi’s Covering Problem Revisited , 1993 .
[13] Jorge Urrutia,et al. Illuminating Rectangles and Triangles in the Plane , 1993, J. Comb. Theory, Ser. B.
[14] Bernard Chazelle. Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..
[15] Jorge Urrutia,et al. Illuminating high-dimensional convex sets , 1995 .
[16] Prosenjit Bose,et al. Guarding Polyhedral Terrains , 1997, Comput. Geom..
[17] K. Bezdek. THE PROBLEM OF ILLUMINATION OF THE BOUNDARY OF A CONVEX BODY BY AFFINE SUBSPACES , 1991 .
[18] Jorge Urrutia,et al. On illuminating line segments in the plane , 1995, Discret. Math..
[19] E. Schönhardt,et al. Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .
[20] Vladimir G. Boltyanski,et al. A solution of Hadwiger's covering problem for zonoids , 1992, Comb..
[21] Jorge Urrutia,et al. Illumination of Polygons with Vertex Lights , 1995, Inf. Process. Lett..
[22] A. Bezdek,et al. On illumination in the plane by line segments , 1992 .
[23] Wm. Randolph Franklin,et al. Art Gallery Theorems and Algorithms (Joseph O'Rourke) , 1989, SIAM Rev..
[24] V. Boltyanski,et al. Excursions into Combinatorial Geometry , 1996 .
[25] F. Levi. Überdeckung eines Eibereiches durch Parallelverschiebung seines offenen Kerns , 1955 .
[26] Steve Fisk,et al. A short proof of Chvátal's Watchman Theorem , 1978, J. Comb. Theory, Ser. B.
[27] Chuanming Zong. Some remarks concerning kissing numbers, blocking numbers and covering numbers , 1995 .
[28] Frank Hoffmann,et al. The art gallery theorem for polygons with holes , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[29] O. Schramm. Illuminating Sets of Constant Width , 1988 .
[30] Zoltán Füredi,et al. The prison yard problem , 1994, Comb..
[31] V. Chvátal. A combinatorial theorem in plane geometry , 1975 .
[32] T. Shermer. Recent Results in Art Galleries , 1992 .
[33] Raimund Seidel,et al. On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..