Diagonalizing the Hamiltonian of λφ4 theory in 2 space-time dimensions

Abstract We propose a new non-perturbative technique for calculating the scattering amplitudes of field-theory directly from the eigenstates of the Hamiltonian. Our method involves a discretized momentum space and a momentum cutoff, thereby truncating the Hilbert space and making numerical diagonalization of the Hamiltonian achievable. We show how to do this in the context of a simplified λ ϕ 4 theory in two space–time dimensions. We present the results of our diagonalization, its dependence on time, its dependence on the parameters of the theory and its renormalization.

[1]  Massless Bosons,et al.  Spontaneous Symmetry Breakdown without Massless Bosons , 2011 .

[2]  S. Rychkov,et al.  Hamiltonian truncation study of the $φ^4$ theory in two dimensions , 2014, 1512.00493.

[3]  James Glimm,et al.  A LAMBDA PHI**4 QUANTUM FIELD THEORY WITHOUT CUTOFFS. 1 , 1968 .

[4]  Hamiltonian Truncation Study of the 4 Theory in Two Dimensions II. The Z 2 -Broken Phase and the Chang Duality , 2015, 1512.00493.

[5]  The diagonalization of quantum field Hamiltonians , 2000, hep-th/0002251.

[6]  J. T. Childers,et al.  Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012 .

[7]  E. Witten,et al.  Direct proof of the tree-level scattering amplitude recursion relation in Yang-mills theory. , 2005, Physical Review Letters.

[8]  J. Kaplan,et al.  What is the simplest quantum field theory? , 2008, 0808.1446.

[9]  T. Kibble,et al.  Symmetry Breaking in Non-Abelian Gauge Theories , 1967 .

[10]  P. W. Higgs Broken symmetries, massless particles and gauge fields , 1964 .

[11]  S. Glasgow,et al.  Quantum fluctuations in the dressed vacuum of a bosonic model system , 2012 .

[12]  M. Luo,et al.  An introduction to on-shell recursion relations , 2011, 1111.5759.

[13]  H. Thomas,et al.  What is the Amplituhedron , 2018 .

[14]  L. Infeld Quantum Theory of Fields , 1949, Nature.

[15]  Q. Su,et al.  Dynamics of Two- and Four-Boson Interactions in Dressed Vacuum States , 2011 .

[16]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[17]  J. Elias-Miró,et al.  The renormalized Hamiltonian truncation method in the large ET expansion , 2015, 1512.05746.

[18]  F. Englert,et al.  Broken Symmetry and the Mass of Gauge Vector Mesons , 1964 .

[19]  A. Kavazis,et al.  A Ketogenic Diet in Rodents Elicits Improved Mitochondrial Adaptations in Response to Resistance Exercise Training Compared to an Isocaloric Western Diet , 2016, Front. Physiol..

[20]  N. Arkani-Hamed,et al.  Positive amplitudes in the amplituhedron , 2014, 1412.8478.

[21]  P. Benincasa New structures in scattering amplitudes: A review , 2013, 1312.5583.

[22]  Ken Wilson: Solving the Strong Interactions , 2014, 1405.7086.

[23]  L. Dixon A brief introduction to modern amplitude methods , 2013, 1310.5353.

[24]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[25]  G. Guralnik,et al.  Global Conservation Laws and Massless Particles , 1964 .

[26]  Claudio Rebbi,et al.  Lattice Gauge Theories And Monte Carlo Simulations , 1983 .

[27]  Taylor,et al.  Amplitude for n-gluon scattering. , 1986, Physical review letters.

[28]  P. W. Higgs Broken Symmetries and the Masses of Gauge Bosons , 1964 .