Solid state PbS Quantum dots /TiO 2 Nanoparticles heterojunction solar cell

[1]  Jianbo Gao,et al.  Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell , 2010, Advanced materials.

[2]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[3]  Matt Law,et al.  Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. , 2010, Nano letters.

[4]  Lukasz Brzozowski,et al.  Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. , 2010, Journal of the American Chemical Society.

[5]  S. Haque,et al.  PbS and CdS Quantum Dot‐Sensitized Solid‐State Solar Cells: “Old Concepts, New Results” , 2009 .

[6]  A Paul Alivisatos,et al.  Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. , 2009, Nano letters.

[7]  Sung Jin Kim,et al.  Enhancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange , 2009, Nanotechnology.

[8]  Reiko Ogura,et al.  High-performance dye-sensitized solar cell with a multiple dye system , 2009 .

[9]  Juan Bisquert,et al.  Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. , 2009, The journal of physical chemistry. A.

[10]  S. Carter,et al.  All-inorganic CdSe/PbSe nanoparticle solar cells , 2008 .

[11]  Byung-Ryool Hyun,et al.  Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. , 2008, ACS nano.

[12]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[13]  T. Krauss,et al.  Ultrabright PbSe magic-sized clusters. , 2008, Nano letters.

[14]  Ewa M. Goldys,et al.  Linear Absorption and Molar Extinction Coefficients in Direct Semiconductor Quantum Dots , 2008 .

[15]  A. Nozik Multiple exciton generation in semiconductor quantum dots , 2008 .

[16]  Edward H. Sargent,et al.  Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. , 2008, ACS nano.

[17]  Edward H. Sargent,et al.  Schottky-quantum dot photovoltaics for efficient infrared power conversion , 2008 .

[18]  M. Kovalenko,et al.  Quasi-seeded growth of ligand-tailored PbSe nanocrystals through cation-exchange-mediated nucleation. , 2008, Angewandte Chemie.

[19]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[20]  Jian Xu,et al.  Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells , 2006 .

[21]  G. Konstantatos,et al.  Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier , 2005 .

[22]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[23]  Udo Bach,et al.  Quantum dot sensitization of organic-inorganic hybrid solar cells , 2002 .

[24]  A. Knorr,et al.  Optical near-field response of semiconductor quantum dots , 1997 .