Helicopter vibration reduction using structural optimization with aeroelastic/multidisciplinary constraints - A survey

This paper presents a survey of the state-of-the-art in the field of structural optimization when applied to vibration reduction of helicopters in forward flight with aeroelastic and multidisciplinary constraints. It emphasizes the application of the modern approach where the optimization is formulated as a mathematical programming problem, the objective function consists of the vibration levels at the hub, and behavior constraints are imposed on the blade frequencies and aeroelastic stability margins, as well as on a number of additional ingredients that can have a significant effect on the overall performance and flight mechanics of the helicopter. It is shown that the integrated multidisciplinary optimization of rotorcraft offers the potential for substantial improvements, which can be achieved by careful preliminary design and analysis without requiring additional hardware such as rotor vibration absorbers or isolation systems.

[1]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[2]  W. R. Mantay,et al.  Integrated multidisciplinary optimization of rotorcraft: A plan for development , 1989 .

[3]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[4]  P. Shanthakumaran,et al.  Aeroelastic tailoring of rotor blades for vibration reduction in forward flight , 1983 .

[5]  Peretz P. Friedmann,et al.  Application of modern structural optimization to vibration reduction in rotorcraft , 1984 .

[6]  Peretz P. Friedmann,et al.  Structural optimization with aeroelastic constraints of rotor blades with straight and swept tips , 1990 .

[7]  L. A. Schmit,et al.  Structural synthesis - Its genesis and development , 1981 .

[8]  Peretz P. Friedmann,et al.  Rotor blade aeroelasticity in forward flight with an implicit aerodynamic formulation , 1988 .

[9]  Michael R. Horne,et al.  Minimum weight design , 1979 .

[10]  E. R. Wood,et al.  ANALYSIS OF HELICOPTER AEROELASTIC CHARACTERISTICS IN HIGH-SPEED FLIGHT , 1963 .

[11]  Howard M. Adelman,et al.  Optimal placement of tuning masses for vibration reduction in helicopter rotor blades , 1990 .

[12]  Peretz P. Friedmann,et al.  APPLICATION OF THE FINITE ELEMENT METHOD TO ROTARY-WING AEROELASTICITY. , 1980 .

[13]  McDonnell Douglas Helicopter Co.,et al.  Optimal Design of an Advanced Composite Rotating Flexbeam , 1988 .

[14]  Inderjit Chopra,et al.  Aeroelastic optimization of a helicopter rotor , 1989 .

[15]  Hirokazu Miura,et al.  Applications of numerical optimization methods to helicopter design problems: A survey , 1984 .

[16]  Holt Ashley,et al.  On Making Things the Best-Aeronautical Uses of Optimization , 1982 .

[17]  Aditi Chattopadhyay,et al.  Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades , 1989 .

[18]  G. Vanderplaats Approximation concepts for numerical airfoil optimization , 1979 .

[19]  J. Shamie,et al.  Implementation and verification of a comprehensive helicopter coupled rotor - Fuselage analysis , 1985 .

[20]  R. H. Blackwell,et al.  Blade Design for Reduced Helicopter Vibration , 1983 .

[21]  Robert G. Loewy,et al.  Helicopter Vibrations: A Technological Perspective , 1984 .

[22]  M. W. Davis,et al.  Experimental Verification of Helicopter Blade Designs Optimized For Minimum Vibration , 1988 .

[23]  Mark W. Davis,et al.  Wind Tunnel Tests of Helicopter Blade Designs Optimized for Minimum Vibration , 1989 .

[24]  Charles A. Gates,et al.  Investigation of Helicopter Blade Flutter and Load Amplification Problems , 1957 .

[25]  Roberto Celi,et al.  Optimum design of helicopter rotors for longitudinal handling qualities improvement in forward flight , 1989 .

[26]  David A. Peters,et al.  Design of helicopter rotor blades for optimum dynamic characteristics , 1986 .

[27]  Roberto Celi,et al.  AEROELASTIC MODELING OF SWEPT TIP ROTOR BLADES USING FINITE ELEMENTS. , 1988 .

[28]  Peretz P. Friedmann,et al.  Coupled flap-lag-torsional dynamics of hingeless rotor blades in forward flight , 1982 .

[29]  G. Reichert,et al.  Helicopter vibration control: a survey , 1980 .

[30]  Garret N. Vanderplaats,et al.  CONMIN: A FORTRAN program for constrained function minimization: User's manual , 1973 .

[31]  D. Banerjee,et al.  Application of numerical optimization methods in helicopter industry , 1987 .

[32]  Aditi Chattopadhyay,et al.  Minimum weight design of rotorcraft blades with multiple frequency and stress constraints , 1988 .

[33]  Peretz P. Friedmann,et al.  Optimum design of rotor blades for vibration reduction in forward flight , 1984 .

[34]  George W. Brooks,et al.  A dynamic-model study of the effect of added weights and other structural variations on the blade bending strains of an experimental two-blade jet-driven helicopter in hovering and forward flight , 1955 .

[35]  Inderjit Chopra,et al.  Stability sensitivity analysis for the aeroelastic optimization of a helicopter rotor , 1988 .

[36]  R. E. Hutton,et al.  Effect of Spanwise and Chordwise Mass Distribution on Rotor Blade Cyclic Stresses , 1956 .

[37]  R. B. Taylor,et al.  Helicopter Vibration Reduction by Rotor Blade Modal Shaping , 1982 .

[38]  Inderjit Chopra,et al.  Design sensitivity analysis for an aeroelastic optimization of a helicopter blade , 1987 .

[39]  Hirokazu Miura,et al.  Second order approximation of natural frequency constraints in structural synthesis , 1978 .

[40]  R. Haftka,et al.  Sensitivity Analysis of Discrete Structural Systems , 1986 .

[41]  Wayne Johnson,et al.  A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 2: User's manual , 1980 .

[42]  G. N. Vanderplaats,et al.  ADS-1 - A new general-purpose optimization program. [automated design synthesis] , 1984 .

[43]  L. A. Schmit,et al.  NEWSUMT: A FORTRAN program for inequality constrained function minimization, users guide , 1979 .

[44]  R. Perley Regression analysis as a design optimization tool , 1984 .

[45]  R. H. Miller,et al.  Helicopter Blade Vibration and Flutter , 1956 .

[46]  R. Bielawa,et al.  Techniques for stability analysis and design optimization with dynamic constraints of nonconservative linear systems , 1971 .

[47]  Mark W. Davis,et al.  Application of Design Optimization Techniques to Rotor Dynamics Problems , 1986 .

[48]  Peretz P. Friedmann,et al.  Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights , 1990 .