Extension of the Substrate Utilization Range of Ralstonia eutropha Strain H16 by Metabolic Engineering To Include Mannose and Glucose

ABSTRACT The Gram-negative facultative chemolithoautotrophic bacterium Ralstonia eutropha strain H16 is known for its narrow carbohydrate utilization range, which limits its use for biotechnological production of polyhydroxyalkanoates and possibly other products from renewable resources. To broaden its substrate utilization range, which is for carbohydrates and related compounds limited to fructose, N-acetylglucosamine, and gluconate, strain H16 was engineered to use mannose and glucose as sole carbon sources for growth. The genes for a facilitated diffusion protein (glf) from Zymomonas mobilis and for a glucokinase (glk), mannofructokinase (mak), and phosphomannose isomerase (pmi) from Escherichia coli were alone or in combination constitutively expressed in R. eutropha strain H16 under the control of the neokanamycin or lac promoter, respectively, using an episomal broad-host-range vector. Recombinant strains harboring pBBR1MCS-3::glf::mak::pmi or pBBR1MCS-3::glf::pmi grew on mannose, whereas pBBR1MCS-3::glf::mak and pBBR1MCS-3::glf did not confer the ability to utilize mannose as a carbon source to R. eutropha. The recombinant strain harboring pBBR1MCS-3::glf::pmi exhibited slower growth on mannose than the recombinant strain harboring pBBR1MCS-3::glf::mak::pmi. These data indicated that phosphomannose isomerase is required to convert mannose-6-phosphate into fructose-6-phosphate for subsequent catabolism via the Entner-Doudoroff pathway. In addition, all plasmids also conferred to R. eutropha the ability to grow in the presence of glucose. The best growth was observed with a recombinant R. eutropha strain harboring plasmid pBBR1MCS-2::P nk ::glk::glf. In addition, expression of the respective enzymes was demonstrated at the transcriptional and protein levels and by measuring the activities of mannofructokinase (0.622 ± 0.063 U mg−1), phosphomannose isomerase (0.251 ± 0.017 U mg−1), and glucokinase (0.518 ± 0.040 U mg−1). Cells of recombinant strains of R. eutropha synthesized poly(3-hydroxybutyrate) to ca. 65 to 67% (wt/wt) of the cell dry mass in the presence of 1% (wt/vol) glucose or mannose as the sole carbon sources.

[1]  Jon Evans,et al.  Bioplastics Get Growing , 2010 .

[2]  A. Steinbüchel,et al.  Ralstonia eutropha Strain H16 as Model Organism for PHA Metabolism and for Biotechnological Production of Technically Interesting Biopolymers , 2008, Journal of Molecular Microbiology and Biotechnology.

[3]  M. Galbe,et al.  Bioethanol production from non-starch carbohydrate residues in process streams from a dry-mill ethanol plant. , 2008, Bioresource technology.

[4]  Seung Pil Pack,et al.  Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. , 2007, Microbiology.

[5]  Pål Börjesson,et al.  Industrial biotechnology for the production of bio-based chemicals--a cradle-to-grave perspective. , 2007, Trends in biotechnology.

[6]  Anne Pohlmann,et al.  Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16 , 2006, Nature Biotechnology.

[7]  A. Steinbüchel,et al.  Biotechnology of biopolymers : from synthesis to patents , 2005 .

[8]  A. Steinbüchel,et al.  Identification of the Anabaena sp. strain PCC7120 cyanophycin synthetase as suitable enzyme for production of cyanophycin in gram-negative bacteria like Pseudomonas putida and Ralstonia eutropha. , 2004, Biomacromolecules.

[9]  T. W. Jeffries,et al.  Metabolic engineering for improved fermentation of pentoses by yeasts , 2004, Applied Microbiology and Biotechnology.

[10]  A. Steinbüchel,et al.  Lactose- and galactose-utilizing strains of poly(hydroxyalkanoic acid)-accumulating Alcaligenes eutrophus and Pseudomonas saccharophila obtained by recombinant DNA technology , 1990, Applied Microbiology and Biotechnology.

[11]  A. Steinbüchel,et al.  Formation of blends of various poly(3-hydroxyalkanoic acids) by a recombinant strain of Pseudomonas oleovorans , 1990, Applied Microbiology and Biotechnology.

[12]  H. Schlegel,et al.  Verwertung von Fructose durch Hydrogenomonas H16 (I.) , 1964, Archiv für Mikrobiologie.

[13]  H. Schlegel,et al.  Isolierung und Charakterisierung katabolischer Defektmutanten von Hydrogenomonas eutropha Stamm H16 , 2004, Archiv für Mikrobiologie.

[14]  C. König,et al.  Konstitutive Glucose-6-phosphat-Dehydrogenase bei Glucose verwertenden Mutanten von einem kryptischen Wildstamm , 2004, Archiv für Mikrobiologie.

[15]  H. Schlegel,et al.  Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen , 2004, Archiv für Mikrobiologie.

[16]  A. Sinskey,et al.  Ralstonia eutropha H16 Encodes Two and Possibly Three Intracellular Poly[d-(−)-3-Hydroxybutyrate] Depolymerase Genes , 2003, Journal of bacteriology.

[17]  H. Sahm,et al.  Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation , 2003, Applied Microbiology and Biotechnology.

[18]  B. Bowien,et al.  Genetics and control of CO2 assimilation in the chemoautotroph Ralstoniaeutropha , 2002, Archives of Microbiology.

[19]  Björn H. Junker,et al.  Accumulation of the PhaP Phasin of Ralstonia eutropha Is Dependent on Production of Polyhydroxybutyrate in Cells , 2001, Journal of bacteriology.

[20]  Clement BordierO Phase Separation of Integral Membrane Proteins in Triton X-114 Solution , 2001 .

[21]  B. Friedrich,et al.  A Megaplasmid-Borne Anaerobic Ribonucleotide Reductase in Alcaligenes eutrophus H16 , 1999, Journal of bacteriology.

[22]  A. Cornish-Bowden,et al.  Evolution and regulatory role of the hexokinases. , 1998, Biochimica et biophysica acta.

[23]  M. Zhang,et al.  Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering , 1996, Applied and environmental microbiology.

[24]  R. Krämer,et al.  Expression of the Escherichia coli pmi gene, encoding phosphomannose-isomerase in Zymomonas mobilis, leads to utilization of mannose as a novel growth substrate, which can be used as a selective marker , 1996, Applied and environmental microbiology.

[25]  D. Roop,et al.  Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. , 1995, Gene.

[26]  H. Sahm,et al.  Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action , 1995, Journal of bacteriology.

[27]  L. Ingram,et al.  Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport , 1995, Molecular microbiology.

[28]  Min Zhang,et al.  Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis , 1995, Science.

[29]  J. Mcmillan,et al.  Arabinose utilization by xylose-fermenting yeasts and fungi , 1994, Applied biochemistry and biotechnology.

[30]  T. Conway,et al.  Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism , 1990, Journal of bacteriology.

[31]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[32]  Eugene W. Myers,et al.  Basic local alignment search tool. Journal of Molecular Biology , 1990 .

[33]  R. Gross,et al.  Pseudomonas oleovorans as a Source of Poly(β-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters , 1988, Applied and environmental microbiology.

[34]  A. Steinbüchel Expression of the Escherichia coli pfkA gene in Alcaligenes eutrophus and in other gram-negative bacteria , 1986, Journal of bacteriology.

[35]  Antonio H. Romano,et al.  d-Glucose Transport System of Zymomonas mobilis , 1985, Applied and environmental microbiology.

[36]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[37]  D. Hanahan Studies on transformation of Escherichia coli with plasmids. , 1983, Journal of molecular biology.

[38]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.

[39]  C. Coulombel,et al.  Identification and kinetic studies of an inducible mannokinase from a Streptomyces strain. , 1982, Biochimica et biophysica acta.

[40]  B. Friedrich,et al.  Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus , 1981, Journal of bacteriology.

[41]  C. Bordier Phase separation of integral membrane proteins in Triton X-114 solution. , 1981, The Journal of biological chemistry.

[42]  H. Schlegel,et al.  Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. , 1981, Annual review of microbiology.

[43]  H. Birnboim,et al.  A rapid alkaline extraction procedure for screening recombinant plasmid DNA. , 1979, Nucleic acids research.

[44]  H. Birnboim,et al.  A RAPID ALKALINE EXTRACTION PROCEDURE FOR SCREENING RECOMBINANT DNA , 1979 .

[45]  Y. Hirota,et al.  On the process of cellular division in Escherichia coli: a mutant of E. coli lacking a murein-lipoprotein. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Y. Hirota,et al.  Escherichia coliにおける細胞分裂の過程 ムレイン‐リポたんぱく質を欠如するE. coliの突然変異体 , 1977 .

[47]  Richard L. Anderson,et al.  [6] d-Fructose (d-Mannose) kinase , 1975 .

[48]  R. Anderson,et al.  D-fructose (D-mannose) kinase. , 1975, Methods in enzymology.

[49]  C. Asensio,et al.  Purification and properties of the mannokinase from Escherichia coli. , 1972, Archives of biochemistry and biophysics.

[50]  H. Schlegel,et al.  [Isolation and characterization of mutants of Hydrogenomonas eutropha strain H 16 defective in catabolism. II. Mutants defective in 2-keto-3-deoxy-6-phosphogluconate aldolase]. , 1972, Archiv für Mikrobiologie.

[51]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[52]  K. Weber,et al.  The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. , 1969, The Journal of biological chemistry.

[53]  C. Asensio,et al.  Identification of mannokinase in Escherichia coli. , 1967, Biochemical and biophysical research communications.

[54]  A. Markovitz,et al.  Induction of Capsular Polysaccharide Synthesis by p-Fluorophenylalanine in Escherichia coli Wild Type and Strains with Altered Phenylalanyl Soluble Ribonucleic Acid Synthetase , 1967, Journal of bacteriology.

[55]  H. Schlegel,et al.  Growth of ‘Knallgas’ Bacteria (Hydrogenomonas) using Direct Electrolysis of the Culture Medium , 1965, Nature.