Asymptotic estimates for the number of contingency tables, integer flows, and volumes of transportation polytopes

We prove an asymptotic estimate for the number of mxn non-negative integer matrices (contingency tables) with prescribed row and column sums and, more generally, for the number of integer feasible flows in a network. Similarly, we estimate the volume of the polytope of mxn non-negative real matrices with prescribed row and column sums. Our estimates are solutions of convex optimization problems and hence can be computed efficiently. As a corollary, we show that if row sums R=(r_1, ..., r_m) and column sums C=(c_1, ..., c_n) with r_1 + ... + r_m =c_1 + ... +c_n =N are sufficiently far from constant vectors, then, asymptotically, in the uniform probability space of the mxn non-negative integer matrices with the total sum N of entries, the event consisting of the matrices with row sums R and the event consisting of the matrices with column sums C are positively correlated.

[1]  D. Falikman Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .

[2]  Martin E. Dyer,et al.  A polynomial-time algorithm to approximately count contingency tables when the number of rows is constant , 2002, STOC '02.

[3]  F. Liu FORMULAS FOR THE VOLUMES OF THE POLYTOPE OF DOUBLY-STOCHASTIC MATRICES AND ITS FACES , 2007 .

[4]  Matthieu Fradelizi,et al.  Sections of convex bodies through their centroid , 1997 .

[5]  Béla Bollobás,et al.  Volume Estimates and Rapid Mixing , 1997 .

[6]  Persi Diaconis,et al.  Random Matrices, Magic Squares and Matching Polynomials , 2004, Electron. J. Comb..

[7]  Brendan D. McKay,et al.  Asymptotic enumeration of sparse nonnegative integer matrices with specified row and column sums , 2008, Adv. Appl. Math..

[8]  P. Diaconis,et al.  Testing for independence in a two-way table , 1985 .

[9]  J. Vaaler A geometric inequality with applications to linear forms , 1979 .

[11]  Victor W. Marek,et al.  Satisfiability and Computing van der Waerden Numbers , 2003, Electron. J. Comb..

[12]  Brendan D. McKay,et al.  The asymptotic volume of the Birkhoff polytope , 2007, 0705.2422.

[13]  Igor Pak,et al.  Four Questions on Birkhoff Polytope , 2000 .

[14]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[15]  Jesús A. De Loera,et al.  Counting Integer Flows in Networks , 2003, Found. Comput. Math..

[16]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[17]  B. Grünbaum Partitions of mass-distributions and of convex bodies by hyperplanes. , 1960 .

[18]  B. McKay,et al.  Asymptotic enumeration of contingency tables with constant margins , 2007 .

[19]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[20]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[21]  G. Egorychev The solution of van der Waerden's problem for permanents , 1981 .

[22]  Martin E. Dyer,et al.  Sampling contingency tables , 1997, Random Struct. Algorithms.

[23]  Yuguo Chen,et al.  Sequential Monte Carlo Methods for Statistical Analysis of Tables , 2005 .

[24]  Edward A. Bender,et al.  The asymptotic number of non-negative integer matrices with given row and column sums , 1974, Discret. Math..

[25]  Ben Morris Improved bounds for sampling contingency tables , 2002, Random Struct. Algorithms.

[26]  Matthias Beck,et al.  The Ehrhart Polynomial of the Birkhoff Polytope , 2003, Discret. Comput. Geom..

[27]  P. Diaconis,et al.  Rectangular Arrays with Fixed Margins , 1995 .

[28]  K. Ball An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .

[29]  U. Rothblum,et al.  Scalings of matrices which have prespecified row sums and column sums via optimization , 1989 .

[30]  I. Olkin,et al.  Scaling of matrices to achieve specified row and column sums , 1968 .

[31]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[32]  A. Barvinok,et al.  Counting magic squares in quasi-polynomial time , 2007, math/0703227.

[33]  A. Barvinok Brunn–Minkowski inequalities for contingency tables and integer flows , 2006, math/0603655.

[34]  Alexander I. Barvinok Enumerating Contingency Tables via Random Permanents , 2008, Comb. Probab. Comput..

[35]  I. Good On the Application of Symmetric Dirichlet Distributions and their Mixtures to Contingency Tables , 1976 .

[36]  K. Ball Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .