Supplementary material from "The York Gospels: a 1000-year biological palimpsest"

1.​ ​​ ​Smurfit​ ​Institute​ ​of​ ​Genetics,​ ​Trinity​ ​College​ ​Dublin,​ ​Dublin ​ ​2,​ ​Ireland. 2.​ ​​ ​BioArCh,​ ​University​ ​of​ ​York,​ ​York,​ ​YO10​ ​5DD,​ ​UK. 3.​ ​​ ​Department​ ​of​ ​Preservation,​ ​The​ ​Royal​ ​Library,​ ​DK-1016​ ​København ​ ​K,​ ​Denmark 4. ​Department of Archaeology, University Paris 1 Panthéon-Sorbonne, 3 rue Michelet, 75006 Paris, France. 5.​ ​​ ​Department​ ​of​ ​Archaeology,​ ​University​ ​of​ ​York,​ ​York,​ ​YO10​ ​5DD,​ ​UK. 6.​ ​​ ​Borthwick​ ​Institute​ ​for ​ ​Archives,​ ​University​ ​of​ ​York,​ ​York,​ ​YO10​ ​5DD,​ ​UK. 7. Departments of History and Biology, Georgetown University, 37th and O Streets NW, ICC 600, Washington,​ ​DC,​ ​USA,​ ​20057. 8.​ ​​ ​Museum​ ​of​ ​Natural​ ​History,​ ​University​ ​of​ ​Copenhagen,​ ​Copenhagen,​ ​Denmark. * ​ ​These​ ​authors​ ​contributed​ ​equally​ ​to ​ ​this​ ​work. +Corresponding authors ​m.teasdale@tcd.ie​, ​sarah.fiddyment@york.ac.uk and matthew.collins@york.ac.uk Table​ ​of​ ​contents ​ ​​ ​​ ​​ ​​ ​​ ​​1. ​ ​Parchment​ ​samples 2 The​ ​York​ ​Gospels 2 Estimation ​ ​of​ ​the​ ​size​ ​of​ ​the​ ​animal​ ​skin 2 Borthwick​ ​Archive​ ​documents 2 2. ​ ​Biomolecular​ ​analysis 3 Parchment​ ​sampling 3 DNA ​ ​extraction,​ ​library​ ​preparation ​ ​and​ ​sequencing 3 Read​ ​processing​ ​and​ ​analysis 3 Read​ ​filtering 4 DNA ​ ​damage​ ​assessment 4 Sex ​ ​determination 4 Population ​ ​genetic​ ​analysis 4 Metagenomic​ ​analysis 4 STAMP​ ​analysis 5 3. ​ ​Supplementary​ ​Figures 6 4. ​ ​Supplementary​ ​Tables 15 5. ​ ​References

[1]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[2]  L. Liang,et al.  Improved ancestry estimation for both genotyping and sequencing data using projection procrustes analysis and genotype imputation. , 2015, American journal of human genetics.

[3]  Roman Fischer,et al.  Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting , 2015, Proceedings of the National Academy of Sciences.

[4]  Matthias Meyer,et al.  Illumina sequencing library preparation for highly multiplexed target capture and sequencing. , 2010, Cold Spring Harbor protocols.

[5]  Love Dalén,et al.  Ancient Wolf Genome Reveals an Early Divergence of Domestic Dog Ancestors and Admixture into High-Latitude Breeds , 2015, Current Biology.

[6]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[7]  Mathieu Gautier,et al.  WIDDE: a Web-Interfaced next generation database for genetic diversity exploration, with a first application in cattle , 2015, BMC Genomics.

[8]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[9]  G. Douglas,et al.  Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research , 2017, mSystems.

[10]  Philip L. F. Johnson,et al.  mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters , 2013, Bioinform..

[11]  Ludovic Orlando,et al.  metaBIT, an integrative and automated metagenomic pipeline for analysing microbial profiles from high‐throughput sequencing shotgun data , 2016, Molecular ecology resources.

[12]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[13]  János Dani,et al.  Genome flux and stasis in a five millennium transect of European prehistory , 2014, Nature Communications.