The Turán Theorem for Random Graphs

The aim of this paper is to prove a Turan-type theorem for random graphs. For $\gamma >0$ and graphs $G$ and $H$, write $G\to_\gamma H$ if any $\gamma$-proportion of the edges of $G$ spans at least one copy of $H$ in $G$. We show that for every graph $H$ and every fixed real $\delta>0$, almost every graph $G$ in the binomial random graph model $\cG(n,q)$, with $q=q(n)\gg((\log n)^4/n)^{1/d(H)}$, satisfies $G\to_{(\chi(H)-2)/(\chi(H)-1)+\delta}H$, where as usual $\chi(H)$ denotes the chromatic number of $H$ and $d(H)$ is the ‘degeneracy number’ of $H$.Since $K_l$, the complete graph on $l$ vertices, is $l$-chromatic and $(l-1)$-degenerate, we infer that for every $l\geq2$ and every fixed real $\delta>0$, almost every graph $G$ in the binomial random graph model $\cG(n,q)$, with $q=q(n)\gg((\log n)^4/n)^{1/(l-1)}$, satisfies $G\to_{(l-2)/(l-1)+\delta}K_l$.

[1]  Tibor Szabó,et al.  Turán's theorem in sparse random graphs , 2003, Random Struct. Algorithms.

[2]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[3]  P. Erdos,et al.  SOME RECENT RESULTS ON EXTREMAL PROBLEMS IN GRAPH THEORY (Results) , 2002 .

[4]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[5]  Yoshiharu Kohayakawa,et al.  Szemerédi’s Regularity Lemma and Quasi-randomness , 2003 .

[6]  P. Erdös On the structure of linear graphs , 1946 .

[7]  Yoshiharu Kohayakawa,et al.  Turán's Extremal Problem in Random Graphs: Forbidding Even Cycles , 1995, J. Comb. Theory, Ser. B.

[8]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[9]  Vojtech Rödl,et al.  Large triangle-free subgraphs in graphs withoutK4 , 1986, Graphs Comb..

[10]  D. R. Lick,et al.  k-Degenerate Graphs , 1970, Canadian Journal of Mathematics.

[11]  I. Elldős ON SOME NEW INEQUALITIES CONCERNING EXTREMAL PROPERTIES OF GRAPHS by , 2004 .

[12]  Zoltán Füredi,et al.  Random Ramsey graphs for the four-cycle , 1994, Discret. Math..

[13]  T. Lu ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .

[14]  Yoshiharu Kohayakawa,et al.  An Extremal Problem For Random Graphs And The Number Of Graphs With Large Even-Girth , 1998, Comb..

[15]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[16]  Y. Kohayakawa,et al.  Turán's extremal problem in random graphs: Forbidding odd cycles , 1996, Comb..

[17]  Thomas Schickinger,et al.  Complete subgraphs of random graphs , 2002 .

[18]  Yoshiharu Kohayakawa,et al.  Regular pairs in sparse random graphs I , 2003, Random Struct. Algorithms.

[19]  E. Szemerédi Regular Partitions of Graphs , 1975 .