Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q

Abstract The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 437 kb, and a total length of 658 Mb. Annotation of repetitive elements and coding regions resulted in 265.0 Mb TEs (40.3%) and 20 786 protein-coding genes with putative gene family expansions, respectively. Phylogenetic analysis based on orthologs across 14 arthropod taxa suggested that MED/Q is clustered into a hemipteran clade containing A. pisum and is a sister lineage to a clade containing both R. prolixus and N. lugens. Genome completeness, as estimated using the CEGMA and Benchmarking Universal Single-Copy Orthologs pipelines, reached 96% and 79%. These MED/Q genomic resources lay a foundation for future ‘pan-genomic’ comparisons of invasive vs. noninvasive, invasive vs. invasive, and native vs. exotic Bemisia, which, in return, will open up new avenues of investigation into whitefly biology, evolution, and management.

[1]  Shaoli Wang,et al.  Dynamic monitoring (B versus Q) and further resistance status of Q-type Bemisia tabaci in China , 2017 .

[2]  Honghe Sun,et al.  The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance , 2016, BMC Biology.

[3]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[4]  Shaoli Wang,et al.  Insecticides promote viral outbreaks by altering herbivore competition. , 2015, Ecological applications : a publication of the Ecological Society of America.

[5]  Shaoli Wang,et al.  Flow cytometry and K-mer analysis estimates of the genome sizes of Bemisia tabaci B and Q (Hemiptera: Aleyrodidae) , 2015, Front. Physiol..

[6]  L. Boykin Bemisia tabaci nomenclature: lessons learned. , 2014, Pest management science.

[7]  L. Boykin,et al.  Developing conversed microsatellite markers and their implications in evolutionary analysis of the Bemisia tabaci complex , 2014, Scientific Reports.

[8]  Xiaowei Wang,et al.  Transcriptomic analyses reveal the adaptive features and biological differences of guts from two invasive whitefly species , 2014, BMC Genomics.

[9]  Shaoli Wang,et al.  Sensitivity of Bemisia Tabaci (Hemiptera: Aleyrodidae) to Several New Insecticides in China: Effects of Insecticide Type and Whitefly Species, Strain, and Stage , 2014, Journal of insect science.

[10]  Shaoli Wang,et al.  Multiple Forms of Vector Manipulation by a Plant-Infecting Virus: Bemisia tabaci and Tomato Yellow Leaf Curl Virus , 2013, Journal of Virology.

[11]  Jian Wang,et al.  A heterozygous moth genome provides insights into herbivory and detoxification , 2013, Nature Genetics.

[12]  W. T. Tay,et al.  Will the Real Bemisia tabaci Please Stand Up? , 2012, PloS one.

[13]  M. Li,et al.  Transcriptomic Analysis of the Salivary Glands of an Invasive Whitefly , 2012, PloS one.

[14]  F. Byrne,et al.  Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) Biotypes in North America After the Q Invasion , 2012, Journal of economic entomology.

[15]  Shaoli Wang,et al.  Rapid Spread of Tomato Yellow Leaf Curl Virus in China Is Aided Differentially by Two Invasive Whiteflies , 2012, PloS one.

[16]  P. J. Barro,et al.  Species Concepts as Applied to the Whitefly Bemisia tabaci Systematics: How Many Species Are There? , 2012 .

[17]  R. Nichols,et al.  Use of Mitochondrial Cytochrome Oxidase I Polymerase Chain Reaction-Restriction Fragment Length Polymorphism for Identifying Subclades of Bemisia tabaci Mediterranean Group , 2012, Journal of economic entomology.

[18]  L. Kubatko,et al.  Species Delimitation and Global Biosecurity , 2011, Evolutionary bioinformatics online.

[19]  H. Tsueda,et al.  Reproductive differences between Q and B whiteflies, Bemisia tabaci, on three host plants and negative interactions in mixed cohorts , 2011 .

[20]  Shaoli Wang,et al.  Further Spread of and Domination by Bemisia tabaci (Hemiptera: Aleyrodidae) Biotype Q on Field Crops in China , 2011, Journal of economic entomology.

[21]  M. Elbaz,et al.  Asymmetry in thermal tolerance trade‐offs between the B and Q sibling species of Bemisia tabaci (Hemiptera: Aleyrodidae) , 2011, Journal of evolutionary biology.

[22]  Walter Pirovano,et al.  BIOINFORMATICS APPLICATIONS , 2022 .

[23]  L. Boykin,et al.  Bemisia tabaci: a statement of species status. , 2011, Annual review of entomology.

[24]  R. Nichols,et al.  Extraordinary Resistance to Insecticides Reveals Exotic Q Biotype of Bemisia tabaci in the New World , 2010, Journal of economic entomology.

[25]  F. Wan,et al.  Bemisia tabaci Biotype Q Dominates Other Biotypes Across China , 2010 .

[26]  Judith K. Brown,et al.  Change in the Biotype Composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008 , 2010, Environmental entomology.

[27]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[28]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[29]  D. Crowder,et al.  Plasticity in mating behaviour drives asymmetric reproductive interference in whiteflies , 2010, Animal Behaviour.

[30]  Dawei Li,et al.  The sequence and de novo assembly of the giant panda genome , 2010, Nature.

[31]  Chuan-Xi Zhang,et al.  De novo characterization of a whitefly transcriptome and analysis of its gene expression during development , 2010, BMC Genomics.

[32]  R. Shatters,et al.  Genetic distinctions among the Mediterranean and Chinese populations of Bemisia tabaci Q biotype and their endosymbiont Wolbachia populations , 2009 .

[33]  Keith Bradnam,et al.  Assessing the gene space in draft genomes , 2008, Nucleic acids research.

[34]  Tao Liu,et al.  TreeFam: 2008 Update , 2007, Nucleic Acids Res..

[35]  M. Benton,et al.  Rocks and clocks: calibrating the Tree of Life using fossils and molecules. , 2007, Trends in ecology & evolution.

[36]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[37]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[38]  J. Lagnel,et al.  Biotype status and genetic polymorphism of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in Greece: mitochondrial DNA and microsatellites , 2007, Bulletin of Entomological Research.

[39]  M. Benton,et al.  Paleontological evidence to date the tree of life. , 2006, Molecular biology and evolution.

[40]  G. Weinstock,et al.  Creating a honey bee consensus gene set , 2007, Genome Biology.

[41]  Burkhard Morgenstern,et al.  AUGUSTUS: ab initio prediction of alternative transcripts , 2006, Nucleic Acids Res..

[42]  B. Cong,et al.  THE INTRODUCTION OF THE EXOTIC Q BIOTYPE OF BEMISIA TABACI FROM THE MEDITERRANEAN REGION INTO CHINA ON ORNAMENTAL CROPS , 2006 .

[43]  Tao Liu,et al.  TreeFam: a curated database of phylogenetic trees of animal gene families , 2005, Nucleic Acids Res..

[44]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[45]  W. J. Zhang,et al.  Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China , 2005 .

[46]  S. Kontsedalov,et al.  Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. , 2005, Archives of insect biochemistry and physiology.

[47]  Eugene W. Myers,et al.  PILER: identification and classification of genomic repeats , 2005, ISMB.

[48]  Pavel A. Pevzner,et al.  De novo identification of repeat families in large genomes , 2005, ISMB.

[49]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[50]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[51]  A. Fereres,et al.  Correlation Between Whitefly (Homoptera: Aleyrodidae) Feeding Behavior and Transmission of Tomato Yellow Leaf Curl Virus , 2000 .

[52]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 , 2000, Nucleic Acids Res..

[53]  J. Brown,et al.  A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers , 1999, Molecular ecology.

[54]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[55]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[56]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[57]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[58]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL , 1997, Nucleic Acids Res..

[59]  Rosemarie C. Rosell,et al.  The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? , 1995 .