Writing skyrmions with a magnetic dipole

We demonstrate numerically on large spin lattices that one can write skyrmions in a thin magnetic film with a magnetic dipole of a few tens of nanometer in size. Nucleation of non-chiral skyrmions as well as chiral skyrmions formed by the Dzyaloshinskii-Moriya interaction has been investigated. Analytical model is developed that agrees with numerical results. It is shown that skyrmions can be written though a number of scenarios that depend on the experimental technique and parameters of the system. In one scenario, that branches into subscenarios of different topology, the magnetic dipole on approaching the film creates a skyrmion-antiskyrmion pair. As the dipole moves closer to the film it induces collapse of the antiskyrmion and creation of a non-zero topological charge due to the remaining skyrmion. In a different scenario the dipole moving parallel to the film nucleates a skyrmion at the boundary and then drags it inside the film. Possible implementations of these methods for writing topologically protected information in a magnetic film are discussed.

[1]  A. N’Diaye,et al.  Room temperature skyrmion ground state stabilized through interlayer exchange coupling , 2015 .

[2]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[3]  E. Chudnovsky,et al.  Collapse of skyrmions in two-dimensional ferromagnets and antiferromagnets , 2012, 1204.4848.

[4]  M. Ezawa Giant Skyrmions stabilized by dipole-dipole interactions in thin ferromagnetic films. , 2010, Physical review letters.

[5]  Mark L. Vousden,et al.  Thermal stability and topological protection of skyrmions in nanotracks , 2016, Scientific Reports.

[6]  E. Pomarico,et al.  Laser-Induced Skyrmion Writing and Erasing in an Ultrafast Cryo-Lorentz Transmission Electron Microscope. , 2017, Physical review letters.

[7]  J. Zang,et al.  Skyrmions in magnetic multilayers , 2017, 1706.08295.

[8]  Hugo Lavenant,et al.  Mechanical magnetometry of Cobalt nanospheres deposited by focused electron beam at the tip of ultra-soft cantilevers , 2014, 1404.0492.

[9]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[10]  A. Fert,et al.  Room-Temperature Current-Induced Generation and Motion of sub-100 nm Skyrmions. , 2017, Nano letters.

[11]  Finite energy solitons in highly anisotropic two dimensional ferromagnets , 2006, cond-mat/0606263.

[12]  Kang L. Wang,et al.  Room-Temperature Skyrmion Shift Device for Memory Application. , 2017, Nano letters.

[13]  R. Wiesendanger,et al.  The properties of isolated chiral skyrmions in thin magnetic films , 2015, 1508.02155.

[14]  E. Chudnovsky,et al.  Random field xy model in three dimensions , 2013, 1311.7211.

[15]  M. Mostovoy,et al.  Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet , 2015, Nature Communications.

[16]  Skyrmion in a real magnetic film , 1998, cond-mat/9801114.

[17]  Shizeng Lin,et al.  Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions , 2015, 1512.05012.

[18]  Xi-xiang Zhang,et al.  Skyrmion clusters from Bloch lines in ferromagnetic films , 2017, 1706.02994.

[19]  E. Chudnovsky,et al.  Skyrmion glass in a 2D Heisenberg ferromagnet with quenched disorder , 2018 .

[20]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017 .

[21]  Yong Peng,et al.  Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field , 2018 .

[22]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[23]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[24]  E. Chudnovsky,et al.  Quantum collapse of a magnetic skyrmion , 2018, Physical Review B.

[25]  J. D. de Teresa,et al.  Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID) on cantilever tips , 2017, Beilstein journal of nanotechnology.

[26]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[27]  E. V. Kirichenko,et al.  Stable topological textures in a classical two-dimensional Heisenberg model , 2009, 0901.2707.

[28]  H. Jónsson,et al.  Lifetime of racetrack skyrmions , 2018, Scientific Reports.

[29]  G. Finocchio,et al.  Magnetic skyrmions: from fundamental to applications , 2016 .

[30]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[31]  J. Bland,et al.  Dynamics and switching processes for magnetic bubbles in nanoelements , 2009 .

[32]  Yan Zhou,et al.  Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions , 2014, Scientific Reports.

[33]  Benjamin Krueger,et al.  Inertia and chiral edge modes of a Skyrmion magnetic bubble. , 2012, Physical review letters.