An intranasal influenza virus-vectored vaccine prevents SARS-CoV-2 replication in respiratory tissues of mice and hamsters

[1]  A. Iwasaki,et al.  Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses , 2022, Science.

[2]  L. Wain,et al.  Nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination. , 2022, medRxiv.

[3]  E. Waltz How nasal-spray vaccines could change the pandemic , 2022, Nature.

[4]  M. Churchill,et al.  SARS-CoV-2 Omicron BA.5: Evolving tropism and evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern , 2022, eBioMedicine.

[5]  K. To,et al.  Pathogenicity, transmissibility, and fitness of SARS-CoV-2 Omicron in Syrian hamsters , 2022, Science.

[6]  Fei Shao,et al.  BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection , 2022, Nature.

[7]  P. Earl,et al.  Intranasal inoculation of an MVA-based vaccine induces IgA and protects the respiratory tract of hACE2 mice from SARS-CoV-2 infection , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Graham W. Taylor,et al.  Twin peaks: The Omicron SARS-CoV-2 BA.1 and BA.2 epidemics in England , 2022, Science.

[9]  Luke Taylor Covid-19: True global death toll from pandemic is almost 15 million, says WHO , 2022, BMJ.

[10]  P. Thomas,et al.  Mucosal immune responses to infection and vaccination in the respiratory tract , 2022, Immunity.

[11]  Huachen Zhu,et al.  A live attenuated virus-based intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2 , 2022, Science Bulletin.

[12]  Ryan T Novak,et al.  COVID-19 Mortality and Vaccine Coverage — Hong Kong Special Administrative Region, China, January 6, 2022–March 21, 2022 , 2022, China CDC weekly.

[13]  J. Dushoff,et al.  Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa , 2022, Science.

[14]  D. Altmann,et al.  COVID-19 vaccination: The road ahead , 2022, Science.

[15]  Cheng-Wei Cheng,et al.  Vaccination with SARS-CoV-2 spike protein lacking glycan shields elicits enhanced protective responses in animal models , 2022, Science Translational Medicine.

[16]  B. Walker,et al.  T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals , 2022, Cell.

[17]  Liyuan Liu,et al.  Antibody evasion properties of SARS-CoV-2 Omicron sublineages , 2022, Nature.

[18]  Matthew S. Miller,et al.  Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2 , 2022, Cell.

[19]  A. Sette,et al.  T cell responses to SARS-CoV-2 spike cross-recognize Omicron , 2022, Nature.

[20]  S. Mallal,et al.  SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron , 2022, Cell.

[21]  K. To,et al.  Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron , 2021, Nature.

[22]  T. de Oliveira,et al.  Escape from recognition of SARS-CoV-2 Beta variant spike epitopes but overall preservation of T cell immunity , 2021, Science Translational Medicine.

[23]  Zhiwei Chen,et al.  Nasal prevention of SARS-CoV-2 infection by intranasal influenza-based boost vaccination in mouse models , 2022, EBioMedicine.

[24]  A. Iwasaki,et al.  Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA , 2021, Science Immunology.

[25]  D. Wesemann,et al.  Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant , 2021, Science.

[26]  T. Randall,et al.  Scent of a vaccine , 2021, Science.

[27]  R. Scheuermann,et al.  Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals , 2021, Cell Reports Medicine.

[28]  K. Subbarao The success of SARS-CoV-2 vaccines and challenges ahead , 2021, Cell Host & Microbe.

[29]  D. Fremont,et al.  A single intranasal or intramuscular immunization with chimpanzee adenovirus-vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters , 2021, Cell Reports.

[30]  Bryan D. Bryson,et al.  Predicting the mutational drivers of future SARS-CoV-2 variants of concern , 2021, Science Translational Medicine.

[31]  Edward C. Holmes,et al.  A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology , 2020, Nature Microbiology.

[32]  Kwok-Hung Chan,et al.  Long SARS-CoV-2 nucleocapsid sequences in blood monocytes collected soon after hospital admission , 2020, bioRxiv.

[33]  J. Greenbaum,et al.  Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals , 2020, Cell.

[34]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[35]  K. Subbarao,et al.  How Live Attenuated Vaccines Can Inform the Development of Broadly Cross-Protective Influenza Vaccines , 2019, The Journal of infectious diseases.

[36]  C. Ehrhardt,et al.  Immunomodulatory Nonstructural Proteins of Influenza A Viruses. , 2018, Trends in microbiology.

[37]  Thi H. O. Nguyen,et al.  Resident memory CD8+ T cells in the upper respiratory tract prevent pulmonary influenza virus infection , 2017, Science Immunology.

[38]  K. Kedzierska,et al.  Nasal-associated lymphoid tissues (NALTs) support the recall but not priming of influenza virus-specific cytotoxic T cells , 2017, Proceedings of the National Academy of Sciences.

[39]  R. Krug,et al.  RNA primers and the role of host nuclear RNA polymerase II in influenza viral RNA transcription. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[40]  J. Atkinson,et al.  Decay-Accelerating Factor: Biochemistry, Molecular Biology, and Function , 1989 .