First principles and classical modeling of the oxidized titanium (0001) surface

Abstract The formation of a native oxide layer on the Ti(0001) surface is studied by means of FPMD simulations. In agreement with experimental findings, at low temperature we observe quick saturation of the surface reactivity, whereas incorporation of further O2 molecules in the oxide network takes place after thermal annealing at ∼ 800 K. At an O coverage of 2 ML the oxide layer presents an amorphous structure, an approximate TiO stoichiometry, and a broad distribution of Ti oxidation states from + 1 to + 4. We find consistency between the computed Bader atomic charges on Ti atoms and the correspondent charges computed classically by simple electrostatic minimization methods. On this basis we develop an analytic potential to simulate Ti/TiOx interfaces, including only Coulomb interaction and short-range atomic repulsion terms. Two different parameter sets are proposed and their transferability among TiO2 allomorphs and thin-layer oxide structures is tested both in static relaxations and in room-temperature MD simulations. These show only negligible changes in the topology of the oxide network after annealing and relaxation of the reference quantum model at the classical level. Moreover, we show that superficial oxide layers can be successfully generated purely classically by truncation of a large-scale Ti/amorphous–TiO2 system. This may enable large-scale applications of our potential to tribology and biomolecular adsorption phenomena.

[1]  Andrei V. Bandura,et al.  Derivation of Force Field Parameters for TiO2−H2O Systems from ab Initio Calculations , 2003 .

[2]  A. Selloni,et al.  Chemistry of and on TiO2-anatase surfaces by DFT calculations: a partial review , 2007 .

[3]  E. Kurmaev,et al.  Electronic structure of titanium monoxide , 1997 .

[4]  S. Köppen,et al.  Adsorption of small organic molecules on anatase and rutile surfaces: a theoretical study. , 2008, Physical chemistry chemical physics : PCCP.

[5]  G. A. Lager,et al.  Polyhedral thermal expansion in the TiO 2 polymorphs; refinement of the crystal structures of rutile and brookite at high temperature , 1979 .

[6]  I. Braems,et al.  Use of a variable-charge interatomic potential for atomistic simulations of bulk, oxygen vacancies, and surfaces of rutile TiO 2 , 2006 .

[7]  L. Ciacchi Modelling the onset of oxide formation on metal surfaces from first principles , 2007, 0807.3430.

[8]  T. Walsh,et al.  Interaction of liquid water with the rutile TiO2 (110) surface , 2007 .

[9]  Mike C Payne,et al.  First-principles molecular-dynamics study of native oxide growth on Si(001). , 2005, Physical review letters.

[10]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[11]  Y. Matsushima,et al.  Plasma Oxidation of a Titanium Electrode in dc‐Plasma Above the Water Surface , 2006 .

[12]  Johann Gasteiger,et al.  Electronegativity equalization: application and parametrization , 1985 .

[13]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[14]  M. Finnis,et al.  Vacancy segregation in the initial oxidation stages of the TiN(100) surface. , 2009, The Journal of chemical physics.

[15]  S. Köppen,et al.  Adsorption of Collagen Fragments on Titanium Oxide Surfaces: A Molecular Dynamics Study , 2007 .

[16]  M. Bujor,et al.  Surface science lettersA study of the early stages of the kinetics of titanium oxidation by Auger electron spectroscopy and mirror electron microscopy , 1981 .

[17]  Alessandro Laio,et al.  Automated Parametrization of Biomolecular Force Fields from Quantum Mechanics/Molecular Mechanics (QM/MM) Simulations through Force Matching. , 2007, Journal of chemical theory and computation.

[18]  M C Payne,et al.  "Learn on the fly": a hybrid classical and quantum-mechanical molecular dynamics simulation. , 2004, Physical review letters.

[19]  E. Fromm,et al.  The initial interactions of oxygen with polycrystalline titanium surfaces , 1997 .

[20]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[21]  G. Ackland Theoretical study of titanium surfaces and defects with a new many-body potential , 1992 .

[22]  Dieter Mergel,et al.  Density and refractive index of TiO2 films prepared by reactive evaporation , 2000 .

[23]  C. Oviedo Oxidation kinetics of pure titanium at low pressures , 1993 .

[24]  Annabella Selloni,et al.  Stress-Driven Reconstruction of an Oxide Surface , 2001 .

[25]  A. Yoshigoe,et al.  Time-resolved photoelectron spectroscopy of oxidation on the Ti(0001) surface , 2003 .

[26]  C. Kittel Introduction to solid state physics , 1954 .

[27]  A. Yoshigoe,et al.  Real-time monitoring of oxidation on the Ti(0 0 0 1) surface by synchrotron radiation photoelectron spectroscopy and RHEED-AES , 2003 .

[28]  C. Breslin,et al.  Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. , 2001, Biomaterials.

[29]  Vincenzo Carravetta,et al.  Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[30]  O. Anderson,et al.  Elasticity of TiO2 rutile to 1800 K , 1998 .

[31]  J. VandeVondele,et al.  First-principles molecular dynamics of metallic systems , 1999 .

[32]  J. Gale,et al.  Transferable variable-charge interatomic potential for atomistic simulation of titanium oxides , 2000 .

[33]  M. Payne,et al.  "Hot-atom" O2 dissociation and oxide nucleation on Al(111). , 2004, Physical review letters.

[34]  M. Lazzeri,et al.  Stress-driven reconstruction of an oxide surface: the anatase TiO(2)(001)-(1 x 4) surface. , 2001, Physical review letters.

[35]  Annabella Selloni,et al.  Surface and subsurface oxygen vacancies in anatase TiO 2 and differences with rutile , 2009 .

[36]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[37]  J. Shang,et al.  Ab initio study of oxygen adsorption on the Ti(0001) surface , 2007 .

[38]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[39]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[40]  Muhammad N. Huda,et al.  Density functional calculations of the influence of hydrogen adsorption on the surface relaxation of Ti (0001) , 2005 .

[41]  T. Hanawa,et al.  Characterization of surface film formed on titanium in electrolyte using XPS , 1992 .

[42]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[43]  Masanori Matsui,et al.  Molecular Dynamics Simulation of the Structural and Physical Properties of the Four Polymorphs of TiO2 , 1991 .

[44]  I T Todorov,et al.  DL_POLY_3: the CCP5 national UK code for molecular–dynamics simulations , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  C. Howard,et al.  Structural and thermal parameters for rutile and anatase , 1991 .

[46]  Jianzhong Jiang,et al.  High-pressure polymorphs of anatase TiO 2 , 2000 .

[47]  M. Yoshinari,et al.  Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin. , 2004, Biomaterials.

[48]  S. Köppen,et al.  Simulation of the interface of (100) rutile with aqueous ionic solution , 2006 .

[49]  M. Stengel,et al.  First-principles molecular dynamics of metals: A Lagrangian formulation , 2000 .

[50]  V. V. Hoang Structural properties of simulated liquid and amorphous TiO2 , 2007 .

[51]  I. Braems,et al.  Tight-binding variable-charge model for insulating oxides: Application to TiO2 and ZrO2 polymorphs , 2008 .

[52]  C. Adamo,et al.  Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: performances of different exchange-correlation functionals. , 2007, The Journal of chemical physics.

[53]  N. Marks,et al.  Empirical variable-charge models for titanium oxides: A study in transferability , 2004 .