Barrier films to control loss of 9,10-anthraquinone-2-sulphonate dopant from PEDOT films during electrochemical transitions

[1]  M. Rafiee,et al.  Voltammetry of Electroinactive Species Using Quinone/Hydroquinone Redox: A Known Redox System Viewed in a New Perspective , 2007 .

[2]  Rero M. Rubinger,et al.  Sulfonated polystyrene polymer humidity sensor: Synthesis and characterization , 2007 .

[3]  K. Phani,et al.  Stabilized gold nanoparticles by reduction using 3,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: nanocomposite formation, stability, and application in catalysis. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[4]  J. Fierro,et al.  Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. , 2006, Angewandte Chemie.

[5]  Hyun-Kon Song,et al.  Redox‐Active Polypyrrole: Toward Polymer‐Based Batteries , 2006 .

[6]  M. Andaç,et al.  Application of a New pH-Sensitive Electrode as a Detector in Flow Injection Potentiometry , 2005 .

[7]  H. Ghourchian,et al.  Anthraquinone 2-carboxylic acid as an electron shuttling mediator and attached electron relay for horseradish peroxidase , 2005 .

[8]  P. Kulesza,et al.  Effective Charge Transport in Poly(3,4-ethylenedioxythiophene) Based Hybrid Films Containing Polyoxometallate Redox Centers , 2005 .

[9]  H. Ohkita,et al.  Hole transport in conducting ultrathin films of PEDOT/PSS prepared by layer-by-layer deposition technique , 2004 .

[10]  K. Tammeveski,et al.  Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH , 2004 .

[11]  William R. Salaneck,et al.  Conductivity, morphology, interfacial chemistry, and stability of poly(3,4‐ethylene dioxythiophene)–poly(styrene sulfonate): A photoelectron spectroscopy study , 2003 .

[12]  Jae Hoon Jung,et al.  Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents , 2002 .

[13]  K. Kontturi,et al.  Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes , 2001 .

[14]  Takayuki Kitamura,et al.  Improved solid-state dye solar cells with polypyrrole using a carbon-based counter electrode , 2001 .

[15]  Dean M. DeLongchamp,et al.  Layer-by-layer assembly of PEDOT/polyaniline electrochromic devices , 2001 .

[16]  A. MacDiarmid,et al.  Dependency of properties of in situ deposited polypyrrole films on dopant anion and substrate surface , 2001 .

[17]  T. Nishiumi,et al.  Doping reaction of redox-active dopants into polyaniline , 2000 .

[18]  A. Malinauskas,et al.  Doping of polyaniline by some redox active organic anions , 2000 .

[19]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[20]  M. Yasuzawa,et al.  Properties of glucose sensors prepared by the electropolymerization of a positively charged pyrrole derivative , 1999 .

[21]  S. M. Ahmed,et al.  Electrochemical and Spectroelectrochemical Characterization of Some Polypyrrole/Anthraquinone Sulfonate Films , 1998 .

[22]  Rudy Gostowski,et al.  Teaching Analytical Instrument Design with LabVIEW , 1996 .

[23]  F. Scholz,et al.  A solid composite pH sensor based on quinhydrone , 1995 .

[24]  S. Kuwabata,et al.  Effect of organic dopants on electrical conductivity of polypyrrole films , 1987 .

[25]  K. Ogura,et al.  Polyaniline–Poly(vinyl alcohol) Dispersions for Controlled Ion Exchange of Organic Sulfonates , 1997 .

[26]  J. Rishpon,et al.  Amperometric glucose sensors based on glucose oxidase immobilized in nafion , 1994 .

[27]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .