Monolayer atomic crystal molecular superlattices

[1]  M. Hersam,et al.  Mixed-dimensional van der Waals heterostructures. , 2016, Nature materials.

[2]  Zuocheng Zhang,et al.  Direct observation of the layer-dependent electronic structure in phosphorene. , 2016, Nature nanotechnology.

[3]  Byung Chul Yeo,et al.  A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries. , 2016, Physical chemistry chemical physics : PCCP.

[4]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[5]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[6]  D. Tománek,et al.  Strain-controlled fundamental gap and structure of bulk black phosphorus , 2016, 1606.07789.

[7]  G. Schatz,et al.  Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. , 2016, Nature chemistry.

[8]  W. Goddard,et al.  Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals , 2016, Proceedings of the National Academy of Sciences.

[9]  Jamil Tahir-Kheli,et al.  Resolution of the Band Gap Prediction Problem for Materials Design. , 2016, The journal of physical chemistry letters.

[10]  W. Knap,et al.  Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response , 2016, Scientific Reports.

[11]  Zongfu Yu,et al.  Producing air-stable monolayers of phosphorene and their defect engineering , 2016, Nature Communications.

[12]  M I Katsnelson,et al.  Intrinsic Charge Carrier Mobility in Single-Layer Black Phosphorus. , 2015, Physical review letters.

[13]  Zhongyuan Liu,et al.  Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation , 2015, Nanotechnology.

[14]  Eric Pop,et al.  Li Intercalation in MoS2: In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties. , 2015, Nano letters.

[15]  Le Cai,et al.  Ultrashort Channel Length Black Phosphorus Field-Effect Transistors. , 2015, ACS nano.

[16]  P. Jeon,et al.  Dual Gate Black Phosphorus Field Effect Transistors on Glass for NOR Logic and Organic Light Emitting Diode Switching. , 2015, Nano letters.

[17]  A. Castellanos-Gómez,et al.  Black Phosphorus: Narrow Gap, Wide Applications. , 2015, The journal of physical chemistry letters.

[18]  Zhi-Xun Shen,et al.  Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. , 2015, Nature nanotechnology.

[19]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[20]  S. Chae,et al.  High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering , 2015, Nature Communications.

[21]  Kah-Wee Ang,et al.  Next generation field-effect transistors based on 2D black phosphorus crystal , 2015, 2015 IEEE International Conference on Digital Signal Processing (DSP).

[22]  Jianhua Hao,et al.  Field‐Effect Transistors Based on Amorphous Black Phosphorus Ultrathin Films by Pulsed Laser Deposition , 2015, Advanced materials.

[23]  Seungchul Kim,et al.  Unraveling the Atomistic Sodiation Mechanism of Black Phosphorus for Sodium Ion Batteries by First-Principles Calculations , 2015 .

[24]  M. Kamalakar,et al.  Low Schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. , 2015, Small.

[25]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[26]  Takashi Taniguchi,et al.  Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. , 2014, ACS Nano.

[27]  D. Akinwande,et al.  Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. , 2015, Nano letters.

[28]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[29]  Yingying Wu,et al.  High-quality sandwiched black phosphorus heterostructure and its quantum oscillations , 2014, Nature Communications.

[30]  Rostislav A. Doganov,et al.  Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere , 2014, Nature Communications.

[31]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[32]  S. Cheong,et al.  Gate-tunable phase transitions in thin flakes of 1T-TaS2. , 2014, Nature nanotechnology.

[33]  Takeshi Fujita,et al.  Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. , 2015, Nature chemistry.

[34]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[35]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[36]  Laurence J Hardwick,et al.  In situ Raman study of lithium-ion intercalation into microcrystalline graphite. , 2014, Faraday discussions.

[37]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[38]  Gyu-Tae Kim,et al.  Few-layer black phosphorus field-effect transistors with reduced current fluctuation. , 2014, ACS nano.

[39]  Reinhard Berger,et al.  Graphene nanoribbon heterojunctions. , 2014, Nature nanotechnology.

[40]  Hao Jiang,et al.  Black phosphorus radio-frequency transistors. , 2014, Nano letters.

[41]  Yong-Wei Zhang,et al.  Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene , 2014, Scientific Reports.

[42]  Zhixian Zhou,et al.  Polarized photocurrent response in black phosphorus field-effect transistors. , 2014, Nanoscale.

[43]  Li Yang,et al.  Lattice Vibrational Modes and Raman Scattering Spectra of Strained Phosphorene , 2014, 1407.0736.

[44]  Liangbing Hu,et al.  Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation , 2014, Nature Communications.

[45]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[46]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[47]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[48]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[49]  Rostislav A. Doganov,et al.  Electric field effect in ultrathin black phosphorus , 2014, 1402.5718.

[50]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[51]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[52]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[53]  Yu Huang,et al.  Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.

[54]  Pinshane Y. Huang,et al.  Graphene and boron nitride lateral heterostructures for atomically thin circuitry , 2012, Nature.

[55]  S. Haigh,et al.  Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. , 2012, Nature materials.

[56]  X. Duan,et al.  Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping. , 2011, Nano letters.

[57]  W. Goddard,et al.  Accurate Band Gaps for Semiconductors from Density Functional Theory , 2011 .