The optogenetic (r)evolution

Optogenetics is a rapidly evolving field of technology that allows optical control of genetically targeted biological systems at high temporal and spatial resolution. By heterologous expression of light-sensitive microbial membrane proteins, opsins, cell type-specific depolarization or silencing can be optically induced on a millisecond time scale. What started in a petri dish is applicable today to more complex systems, ranging from the dissection of brain circuitries in vitro to behavioral analyses in freely moving animals. Persistent technical improvement has focused on the identification of new opsins, suitable for optogenetic purposes and genetic engineering of existing ones. Optical stimulation can be combined with various readouts defined by the desired resolution of the experimental setup. Although recent developments in optogenetics have largely focused on neuroscience it has lately been extended to other targets, including stem cell research and regenerative medicine. Further development of optogenetic approaches will not only highly increase our insight into health and disease states but might also pave the way for a future use in therapeutic applications.

[1]  Karl Deisseroth,et al.  Tracking Stem Cell Differentiation in the Setting of Automated Optogenetic Stimulation , 2011, Stem cells.

[2]  T. Bruegmann,et al.  Optogenetic control of heart muscle in vitro and in vivo , 2010, Nature Methods.

[3]  Jacob G. Bernstein,et al.  Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain , 2009, Neuron.

[4]  Alexander Gottschalk,et al.  Optogenetic Long-Term Manipulation of Behavior and Animal Development , 2011, PloS one.

[5]  Michael Z. Lin,et al.  Characterization of engineered channelrhodopsin variants with improved properties and kinetics. , 2009, Biophysical journal.

[6]  R. Pallini,et al.  Role of L‐type Ca2+ channels in neural stem/progenitor cell differentiation , 2006, The European journal of neuroscience.

[7]  K. Deisseroth,et al.  Circuit-breakers: optical technologies for probing neural signals and systems , 2007, Nature Reviews Neuroscience.

[8]  Edward M. Callaway,et al.  Short Promoters in Viral Vectors Drive Selective Expression in Mammalian Inhibitory Neurons, but do not Restrict Activity to Specific Inhibitory Cell-Types , 2009, Frontiers in neural circuits.

[9]  T. Ishizuka,et al.  Molecular Determinants Differentiating Photocurrent Properties of Two Channelrhodopsins from Chlamydomonas* , 2009, Journal of Biological Chemistry.

[10]  B. Schobert,et al.  Halorhodopsin is a light-driven chloride pump. , 1982, The Journal of biological chemistry.

[11]  K. Deisseroth,et al.  Bi-stable neural state switches , 2009, Nature Neuroscience.

[12]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[13]  Feng Zhang,et al.  An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology , 2007, Journal of neural engineering.

[14]  Hartmann Harz,et al.  Rhodopsin-regulated calcium currents in Chlamydomonas , 1991, Nature.

[15]  S. Sternson,et al.  A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-Range Circuit Mapping , 2008, The Journal of Neuroscience.

[16]  A. Turken,et al.  The Neural Architecture of the Language Comprehension Network: Converging Evidence from Lesion and Connectivity Analyses , 2011, Front. Syst. Neurosci..

[17]  W. C. Hall,et al.  High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice , 2007, Proceedings of the National Academy of Sciences.

[18]  Patrick S. Stumpf,et al.  Light Modulation of Cellular cAMP by a Small Bacterial Photoactivated Adenylyl Cyclase, bPAC, of the Soil Bacterium Beggiatoa*♦ , 2010, The Journal of Biological Chemistry.

[19]  Y. Mukohata,et al.  Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. , 1977, Biochemical and biophysical research communications.

[20]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[21]  K. Deisseroth,et al.  Neural substrates of awakening probed with optogenetic control of hypocretin neurons , 2007, Nature.

[22]  G. Shepherd,et al.  Laminar and Columnar Organization of Ascending Excitatory Projections to Layer 2/3 Pyramidal Neurons in Rat Barrel Cortex , 2005, The Journal of Neuroscience.

[23]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[24]  E. Koonin,et al.  Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. , 2000, Science.

[25]  W. Denk,et al.  Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Karl Deisseroth,et al.  Functional Control of Transplantable Human ESC‐Derived Neurons Via Optogenetic Targeting , 2010, Stem cells.

[27]  Michael B. Stadler,et al.  Encoding of conditioned fear in central amygdala inhibitory circuits , 2010, Nature.

[28]  K. Deisseroth,et al.  High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels , 2011, Proceedings of the National Academy of Sciences.

[29]  Amiram Grinvald,et al.  VSDI: a new era in functional imaging of cortical dynamics , 2004, Nature Reviews Neuroscience.

[30]  Wei Zhang,et al.  A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2‐mediated photoactivation of targeted neurons , 2007, The European journal of neuroscience.

[31]  Karl Deisseroth,et al.  Improved expression of halorhodopsin for light-induced silencing of neuronal activity , 2008, Brain cell biology.

[32]  J. Spudich,et al.  New Channelrhodopsin with a Red-Shifted Spectrum and Rapid Kinetics from Mesostigma viride , 2011, mBio.

[33]  D. Oesterhelt,et al.  Rhodopsin-like protein from the purple membrane of Halobacterium halobium. , 1971, Nature: New biology.

[34]  W. Stoeckenius,et al.  Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. , 1974, The Journal of biological chemistry.

[35]  Raag D. Airan,et al.  Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures , 2010, Nature Protocols.

[36]  Tetsuichiro Saito In vivo electroporation in the embryonic mouse central nervous system , 2006, Nature Protocols.

[37]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[38]  Tiansen Li,et al.  Retinal degeneration in the rd mouse is caused by a defect in the β subunit of rod cGMP-phosphodiesterase , 1990, Nature.

[39]  Alice M Stamatakis,et al.  Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. , 2011, Nature.

[40]  P. Hegemann,et al.  The nature of rhodopsin-triggered photocurrents in Chlamydomonas. I. Kinetics and influence of divalent ions. , 1996, Biophysical journal.

[41]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[42]  G. Feng,et al.  Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits , 2006, The Journal of Neuroscience.

[43]  Lief E. Fenno,et al.  Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.

[44]  Murtaza Z Mogri,et al.  Cell Type–Specific Loss of BDNF Signaling Mimics Optogenetic Control of Cocaine Reward , 2010, Science.

[45]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[46]  Murtaza Z Mogri,et al.  Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo , 2007, The Journal of Neuroscience.

[47]  H. Nakai,et al.  Characterization of genome integrity for oversized recombinant AAV vector. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[48]  Mary Kay Lobo,et al.  Antidepressant Effect of Optogenetic Stimulation of the Medial Prefrontal Cortex , 2010, The Journal of Neuroscience.

[49]  K. Deisseroth,et al.  Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri , 2008, Nature Neuroscience.

[50]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[52]  Ilana B. Witten,et al.  Cholinergic Interneurons Control Local Circuit Activity and Cocaine Conditioning , 2010, Science.

[53]  Stefan R. Pulver,et al.  Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. , 2009, Journal of neurophysiology.

[54]  K. Deisseroth,et al.  Ultrafast optogenetic control , 2010, Nature Neuroscience.

[55]  Attila Losonczy,et al.  Multi‐array silicon probes with integrated optical fibers: light‐assisted perturbation and recording of local neural circuits in the behaving animal , 2010, The European journal of neuroscience.

[56]  Aristides B. Arrenberg,et al.  Optogenetic Control of Cardiac Function , 2010, Science.

[57]  E. Bamberg,et al.  Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh , 2011, Nature Neuroscience.

[58]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  F. Engert,et al.  Escape Behavior Elicited by Single, Channelrhodopsin-2-Evoked Spikes in Zebrafish Somatosensory Neurons , 2008, Current Biology.

[60]  E. Bamberg,et al.  Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. , 2010, Biochemistry.

[61]  Karl Deisseroth,et al.  Optical activation of lateral amygdala pyramidal cells instructs associative fear learning , 2010, Proceedings of the National Academy of Sciences.

[62]  R. Buckner,et al.  Mapping brain networks in awake mice using combined optical neural control and fMRI. , 2011, Journal of neurophysiology.

[63]  Nathan C. Klapoetke,et al.  A High-Light Sensitivity Optical Neural Silencer: Development and Application to Optogenetic Control of Non-Human Primate Cortex , 2010, Front. Syst. Neurosci..

[64]  D. Leopold Neuroscience: fMRI under the spotlight , 2010, Nature.

[65]  Raag D. Airan,et al.  Temporally precise in vivo control of intracellular signalling , 2009, Nature.

[66]  T. Mayumi,et al.  Optimization of transcriptional regulatory elements for constructing plasmid vectors. , 2001, Gene.

[67]  Javier Díez-García,et al.  Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors , 2006, Trends in Neurosciences.

[68]  Dae-Shik Kim,et al.  Global and local fMRI signals driven by neurons defined optogenetically by type and wiring , 2010, Nature.

[69]  E. Poeschla,et al.  Lentiviral vectors. , 2005, Advances in biochemical engineering/biotechnology.

[70]  Peter Hegemann,et al.  Glu 87 of Channelrhodopsin‐1 Causes pH‐dependent Color Tuning and Fast Photocurrent Inactivation † , 2009, Photochemistry and photobiology.

[71]  T. Ishizuka,et al.  Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels , 2006, Neuroscience Research.

[72]  K. Deisseroth,et al.  eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications , 2008, Brain cell biology.

[73]  B. Connors,et al.  Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue , 2009, Journal of neural engineering.

[74]  D. Oesterhelt,et al.  Functions of a new photoreceptor membrane. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[75]  K. Svoboda,et al.  Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience , 2006, Neuron.

[76]  Tarik F Haydar,et al.  Long-Term, Selective Gene Expression in Developing and Adult Hippocampal Pyramidal Neurons Using Focal In Utero Electroporation , 2007, The Journal of Neuroscience.

[77]  Takashi Maejima,et al.  Substitution of 5-HT1A Receptor Signaling by a Light-activated G Protein-coupled Receptor* , 2010, The Journal of Biological Chemistry.

[78]  C. Lundberg,et al.  Virus Vectors for use in the Central Nervous System: Lentiviral Vectors , 2003 .

[79]  A. Dizhoor,et al.  Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration , 2006, Neuron.

[80]  Sharad Ramanathan,et al.  Optical interrogation of neural circuits in Caenorhabditis elegans , 2009, Nature Methods.

[81]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[82]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[83]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[84]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[85]  T. Oertner,et al.  Optical induction of synaptic plasticity using a light-sensitive channel , 2007, Nature Methods.

[86]  David J. Anderson,et al.  Functional identification of an aggression locus in the mouse hypothalamus , 2010, Nature.

[87]  Aristides B. Arrenberg,et al.  Optogenetic Localization and Genetic Perturbation of Saccade-Generating Neurons in Zebrafish , 2010, The Journal of Neuroscience.

[88]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[89]  O. Kiehn,et al.  Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion , 2010, Nature Neuroscience.

[90]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[91]  Charles R. Gerfen,et al.  Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs , 2007, The Journal of Neuroscience.

[92]  Douglas S Kim,et al.  Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration , 2008, Nature Neuroscience.

[93]  Lawrence C. Katz,et al.  Scanning laser photostimulation: a new approach for analyzing brain circuits , 1994, Journal of Neuroscience Methods.

[94]  A. Adamantidis,et al.  Optogenetic deconstruction of sleep – wake circuitry in the brain , 2022 .

[95]  E. Bamberg,et al.  Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae , 2002, Science.

[96]  Lief E. Fenno,et al.  Amygdala circuitry mediating reversible and bidirectional control of anxiety , 2011, Nature.

[97]  Karl Deisseroth,et al.  Integration of light-controlled neuronal firing and fast circuit imaging , 2007, Current Opinion in Neurobiology.

[98]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[99]  T. Ishizuka,et al.  Opto-Current-Clamp Actuation of Cortical Neurons Using a Strategically Designed Channelrhodopsin , 2010, PloS one.

[100]  D. Geschwind GENSAT: a genomic resource for neuroscience research , 2004, The Lancet Neurology.

[101]  Herwig Baier,et al.  Optical control of zebrafish behavior with halorhodopsin , 2009, Proceedings of the National Academy of Sciences.

[102]  Herwig Baier,et al.  Targeting neural circuitry in zebrafish using GAL4 enhancer trapping , 2007, Nature Methods.

[103]  K. Deisseroth,et al.  Orderly recruitment of motor units under optical control in vivo , 2010, Nature Medicine.

[104]  K. Deisseroth,et al.  Tuning arousal with optogenetic modulation of locus coeruleus neurons , 2010, Nature Neuroscience.