Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE

[1]  Kai Ming Ting,et al.  An Instance-weighting Method to Induce Cost-sensitive Trees , 2001 .

[2]  Fernando Nogueira,et al.  Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning , 2016, J. Mach. Learn. Res..

[3]  Taeho Jo,et al.  Class imbalances versus small disjuncts , 2004, SKDD.

[4]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[5]  Fernando Bacao,et al.  Self-Organizing Map Oversampling (SOMO) for imbalanced data set learning , 2017, Expert Syst. Appl..

[6]  S. Salzberg C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993 , 1994, Machine Learning.

[7]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[8]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[9]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[10]  Hendrik Blockeel,et al.  Knowledge Discovery in Databases: PKDD 2003 , 2003, Lecture Notes in Computer Science.

[11]  Pedro M. Domingos MetaCost: a general method for making classifiers cost-sensitive , 1999, KDD '99.

[12]  Steven L. Salzberg,et al.  Book Review: C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993 , 1994, Machine Learning.

[13]  Chumphol Bunkhumpornpat,et al.  DBSMOTE: Density-Based Synthetic Minority Over-sampling TEchnique , 2011, Applied Intelligence.

[14]  Fernando Bação,et al.  Effective data generation for imbalanced learning using conditional generative adversarial networks , 2018, Expert Syst. Appl..

[15]  David A. Cieslak,et al.  Combating imbalance in network intrusion datasets , 2006, 2006 IEEE International Conference on Granular Computing.

[16]  Mikel Galar,et al.  Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches , 2013, Knowl. Based Syst..

[17]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[18]  Gustavo E. A. P. A. Batista,et al.  A study of the behavior of several methods for balancing machine learning training data , 2004, SKDD.

[19]  Francisco Herrera,et al.  A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[20]  Jesús Alcalá-Fdez,et al.  KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework , 2011, J. Multiple Valued Log. Soft Comput..

[21]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[22]  Francisco Herrera,et al.  SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary , 2018, J. Artif. Intell. Res..

[23]  Nitesh V. Chawla,et al.  SMOTEBoost: Improving Prediction of the Minority Class in Boosting , 2003, PKDD.

[24]  Herna L. Viktor,et al.  Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach , 2004, SKDD.

[25]  Chumphol Bunkhumpornpat,et al.  Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem , 2009, PAKDD.

[26]  Xin Yao,et al.  Resampling-Based Ensemble Methods for Online Class Imbalance Learning , 2015, IEEE Transactions on Knowledge and Data Engineering.

[27]  Hui Han,et al.  Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning , 2005, ICIC.

[28]  Isabelle Guyon,et al.  Design of experiments for the NIPS 2003 variable selection benchmark , 2003 .

[29]  Xin Yao,et al.  MWMOTE--Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning , 2014 .

[30]  Anirban DasGupta,et al.  Probability for Statistics and Machine Learning: Fundamentals and Advanced Topics , 2011 .

[31]  Iman Nekooeimehr,et al.  Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets , 2016, Expert Syst. Appl..

[32]  Dennis L. Wilson,et al.  Asymptotic Properties of Nearest Neighbor Rules Using Edited Data , 1972, IEEE Trans. Syst. Man Cybern..

[33]  Rok Blagus,et al.  SMOTE for high-dimensional class-imbalanced data , 2013, BMC Bioinformatics.

[34]  Pravin M. Vaidya,et al.  AnO(n logn) algorithm for the all-nearest-neighbors Problem , 1989, Discret. Comput. Geom..

[35]  Fernando Bação,et al.  Oversampling for Imbalanced Learning Based on K-Means and SMOTE , 2017, Inf. Sci..

[36]  Yuming Zhou,et al.  A novel ensemble method for classifying imbalanced data , 2015, Pattern Recognit..

[37]  Nitesh V. Chawla,et al.  Data Mining for Imbalanced Datasets: An Overview , 2005, The Data Mining and Knowledge Discovery Handbook.

[38]  Bo Tang,et al.  KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).