Regression trees for detecting preference patterns from rank data

A regression tree method for analyzing rank data is proposed. A key ingredient of the methodology is to convert ranks into scores by paired comparison. We then utilize the GUIDE tree method on the score vectors to identify the preference patterns in the data. This method is exempt from selection bias and the simulation results show that it is good with respect to the selection of split variables and has a better prediction accuracy than the two other investigated methods in some cases. Furthermore, it is applicable to complex data which may contain incomplete ranks and missing covariate values. We demonstrate its usefulness in two real data studies.

[1]  Yi-Hung Kung,et al.  Split variable selection for tree modeling on rank data , 2012, Comput. Stat. Data Anal..

[2]  Philip L. H. Yu,et al.  Distance-based tree models for ranking data , 2010, Comput. Stat. Data Anal..

[3]  Eyke Hüllermeier,et al.  Decision tree and instance-based learning for label ranking , 2009, ICML '09.

[4]  Mayer Alvo,et al.  Statistical Methods for Ranking Data , 2014 .

[5]  Leslie Humphreys,et al.  A Mixture Model for Longitudinal Partially Ranked Data , 2014 .

[6]  J. Marden Analyzing and Modeling Rank Data , 1996 .

[7]  R. Davidson On Extending the Bradley-Terry Model to Accommodate Ties in Paired Comparison Experiments , 1970 .

[8]  K. Hornik,et al.  Model-Based Recursive Partitioning , 2008 .

[9]  R. Inglehart The Silent revolution: Changing values and political styles among western publics , 1977 .

[10]  Regina Dittrich,et al.  prefmod: An R Package for Modeling Preferences Based on Paired Comparisons, Rankings, or Ratings , 2012 .

[11]  K. Hornik,et al.  Generalized M‐fluctuation tests for parameter instability , 2007 .

[12]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[13]  W. Loh,et al.  Regression trees for longitudinal and multiresponse data , 2012, 1209.4690.

[14]  Brian S. Yandell,et al.  Practical Data Analysis for Designed Experiments , 1998 .

[15]  Achim Zeileis,et al.  Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning , 2011 .

[16]  K. Hornik,et al.  Unbiased Recursive Partitioning: A Conditional Inference Framework , 2006 .

[17]  Philip L. H. Yu,et al.  Decision Tree Modeling for Ranking Data , 2010, Preference Learning.

[18]  Yu-Shan Shih,et al.  Splitting variable selection for multivariate regression trees , 2007 .

[19]  E. J. Emond,et al.  A new rank correlation coefficient with application to the consensus ranking problem , 2002 .

[20]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[21]  Antonio D'Ambrosio,et al.  A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances , 2016, Psychometrika.

[22]  P. Diaconis Group representations in probability and statistics , 1988 .

[23]  G. De’ath MULTIVARIATE REGRESSION TREES: A NEW TECHNIQUE FOR MODELING SPECIES–ENVIRONMENT RELATIONSHIPS , 2002 .

[24]  Yu-Shan Shih,et al.  SCORE-SCALE DECISION TREE FOR PAIRED COMPARISON DATA , 2016 .

[25]  Wei-Yin Loh,et al.  Fifty Years of Classification and Regression Trees , 2014 .

[26]  Philip L. H. Yu,et al.  Logit tree models for discrete choice data with application to advice-seeking preferences among Chinese Christians , 2016, Comput. Stat..

[27]  Manuela Cattelan,et al.  Models for Paired Comparison Data: A Review with Emphasis on Dependent Data , 2012, 1210.1016.

[28]  D. Critchlow Metric Methods for Analyzing Partially Ranked Data , 1986 .

[29]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[30]  G. V. Kass An Exploratory Technique for Investigating Large Quantities of Categorical Data , 1980 .

[31]  David Magis,et al.  Random Generation of Response Patterns under Computerized Adaptive Testing with the R Package catR , 2012 .

[32]  Regina Dittrich,et al.  Analysing partial ranks by using smoothed paired comparison methods: an investigation of value orientation in Europe , 2002 .

[33]  Jeroen K. Vermunt,et al.  7. Multilevel Latent Class Models , 2003 .