Optimization method for the determination of material parameters in damaged composite structures

An optimization method to identify the material parameters of composite structures using an inverse method is proposed. This methodology compares experimental results with their numerical reproduction using the finite element method in order to obtain an estimation of the error between the results. This error estimation is then used by an evolutionary optimizer to determine, in an iterative process, the value of the material parameters which result in the best numerical fit. The novelty of the method is in the coupling between the simple genetic algorithm and the mixing theory used to numerically reproduce the composite behavior. The methodology proposed has been validated through a simple example which illustrates the exploitability of the method in relation to the modeling of damaged composite structures.

[1]  Mario Bunge,et al.  Classical Field Theories , 1967 .

[2]  L. Kachanov,et al.  Rupture Time Under Creep Conditions , 1999 .

[3]  Kalyanmoy Deb,et al.  Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization , 2008, Eur. J. Oper. Res..

[4]  António Andrade-Campos,et al.  Optimization strategies for non-linear material parameters identification in metal forming problems , 2011 .

[5]  Sergio Oller,et al.  An anisotropic elastoplastic model based on an isotropic formulation , 1995 .

[6]  José Herskovits,et al.  Parameter estimation in active plate structures , 2006 .

[7]  R. de Borst,et al.  Mixed numerical-experimental identification of non-local characteristics of random-fibre-reinforced composites , 1999 .

[8]  Tim Schmitz,et al.  Mechanics Of Composite Materials , 2016 .

[9]  E. Barbero Finite element analysis of composite materials , 2007 .

[10]  J. Lubliner,et al.  Definition of a general implicit orthotropic yield criterion , 2003 .

[11]  Sergio Oller,et al.  Dinámica no-lineal , 2002 .

[12]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[13]  Eric Markiewicz,et al.  An inverse approach to determine the constitutive model parameters from axial crushing of thin-walled square tubes , 1998 .

[14]  E. Barbero Introduction to Composite Materials Design , 1998 .

[15]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1989 .

[16]  Sergio Oller,et al.  A plastic damage constitutive model for composite materials , 1996 .

[17]  Josef Betten,et al.  Creep Theory of Anisotropic Solids , 1981 .

[18]  Luca Lanzi,et al.  An Inverse Approach to Identify the Constitutive Model Parameters for Crashworthiness Modelling of Composite Structures , 2005 .

[19]  P. Manach,et al.  Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms , 2008 .

[20]  António Andrade-Campos,et al.  Novel criteria for determination of material model parameters , 2012 .

[21]  S. Oller Numerical Simulation of Mechanical Behavior of Composite Materials , 2014 .

[22]  Xue-Hui Lin,et al.  Inverse/genetic method and its application in identification of mechanical parameters of interface in composite , 2004 .

[23]  J. Lubliner On the thermodynamic foundations of non-linear solid mechanics , 1972 .

[24]  José Herskovits,et al.  Estimation of piezoelastic and viscoelastic properties in laminated structures , 2009 .

[25]  A. L. Custódio,et al.  GLODS: Global and Local Optimization using Direct Search , 2014, Journal of Global Optimization.

[26]  S. Flügge Principles of Classical Mechanics and Field Theory / Prinzipien der Klassischen Mechanik und Feldtheorie , 1960 .

[27]  Martin Lévesque,et al.  A new approach to inverse identification of mechanical properties of composite materials: Regularized model updating , 2013 .

[28]  Darrell Whitley,et al.  Sharpened and Focused No Free Lunch and Complexity Theory , 2014 .

[29]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[30]  José Herskovits,et al.  Development of a finite element model for the identification of mechanical and piezoelectric properties through gradient optimisation and experimental vibration data , 2002 .

[31]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[32]  Alex H. Barbat,et al.  A numerical procedure simulating RC structures reinforced with FRP using the serial/parallel mixing theory , 2008 .

[33]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—II. Computational aspects , 1987 .

[34]  E. Oñate,et al.  An anisotropic elastoplastic constitutive model for large strain analysis of fiber reinforced composite materials , 2000 .